| @@ 26-49 (lines=24) @@ | ||
| 23 | err = 0.001 |
|
| 24 | ||
| 25 | ||
| 26 | def test_random_state_n_jobs_0(): |
|
| 27 | n_jobs = 2 |
|
| 28 | ||
| 29 | hyper = HillClimbingOptimizer() |
|
| 30 | hyper.add_search( |
|
| 31 | experiment, |
|
| 32 | search_config, |
|
| 33 | n_iter=5, |
|
| 34 | initialize={"random": 1}, |
|
| 35 | random_state=1, |
|
| 36 | n_jobs=n_jobs, |
|
| 37 | ) |
|
| 38 | hyper.run() |
|
| 39 | ||
| 40 | results = hyper.search_data(experiment) |
|
| 41 | ||
| 42 | no_dup = results.drop_duplicates(subset=list(search_space.keys())) |
|
| 43 | print("no_dup", no_dup) |
|
| 44 | print("results", results) |
|
| 45 | ||
| 46 | print(int(len(results) / n_jobs)) |
|
| 47 | print(len(no_dup)) |
|
| 48 | ||
| 49 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 50 | ||
| 51 | ||
| 52 | def test_random_state_n_jobs_1(): |
|
| @@ 19-42 (lines=24) @@ | ||
| 16 | err = 0.001 |
|
| 17 | ||
| 18 | ||
| 19 | def test_random_state_n_jobs_0(): |
|
| 20 | n_jobs = 2 |
|
| 21 | ||
| 22 | hyper = Hyperactive() |
|
| 23 | hyper.add_search( |
|
| 24 | objective_function, |
|
| 25 | search_space, |
|
| 26 | n_iter=5, |
|
| 27 | initialize={"random": 1}, |
|
| 28 | random_state=1, |
|
| 29 | n_jobs=n_jobs, |
|
| 30 | ) |
|
| 31 | hyper.run() |
|
| 32 | ||
| 33 | results = hyper.search_data(objective_function) |
|
| 34 | ||
| 35 | no_dup = results.drop_duplicates(subset=list(search_space.keys())) |
|
| 36 | print("no_dup", no_dup) |
|
| 37 | print("results", results) |
|
| 38 | ||
| 39 | print(int(len(results) / n_jobs)) |
|
| 40 | print(len(no_dup)) |
|
| 41 | ||
| 42 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 43 | ||
| 44 | ||
| 45 | def test_random_state_n_jobs_1(): |
|