| @@ 56-77 (lines=22) @@ | ||
| 53 | else: |
|
| 54 | self.verbosity = [] |
|
| 55 | ||
| 56 | def convert_results2hyper(self): |
|
| 57 | self.eval_times = sum(self.gfo_optimizer.eval_times) |
|
| 58 | self.iter_times = sum(self.gfo_optimizer.iter_times) |
|
| 59 | ||
| 60 | if self.gfo_optimizer.best_para is not None: |
|
| 61 | value = self.hg_conv.para2value(self.gfo_optimizer.best_para) |
|
| 62 | position = self.hg_conv.position2value(value) |
|
| 63 | best_para = self.hg_conv.value2para(position) |
|
| 64 | self.best_para = best_para |
|
| 65 | else: |
|
| 66 | self.best_para = None |
|
| 67 | ||
| 68 | self.best_score = self.gfo_optimizer.best_score |
|
| 69 | self.positions = self.gfo_optimizer.search_data |
|
| 70 | self.search_data = self.hg_conv.positions2results(self.positions) |
|
| 71 | ||
| 72 | results_dd = self.gfo_optimizer.search_data.drop_duplicates( |
|
| 73 | subset=self.s_space.dim_keys, keep="first" |
|
| 74 | ) |
|
| 75 | self.memory_values_df = results_dd[ |
|
| 76 | self.s_space.dim_keys + ["score"] |
|
| 77 | ].reset_index(drop=True) |
|
| 78 | ||
| 79 | def _setup_process(self, nth_process): |
|
| 80 | self.nth_process = nth_process |
|
| @@ 58-79 (lines=22) @@ | ||
| 55 | self.max_time = max_time |
|
| 56 | self.nth_process = nth_process |
|
| 57 | ||
| 58 | def convert_results2hyper(self): |
|
| 59 | self.eval_times = sum(self.gfo_optimizer.eval_times) |
|
| 60 | self.iter_times = sum(self.gfo_optimizer.iter_times) |
|
| 61 | ||
| 62 | if self.gfo_optimizer.best_para is not None: |
|
| 63 | value = self.hg_conv.para2value(self.gfo_optimizer.best_para) |
|
| 64 | position = self.hg_conv.position2value(value) |
|
| 65 | best_para = self.hg_conv.value2para(position) |
|
| 66 | self.best_para = best_para |
|
| 67 | else: |
|
| 68 | self.best_para = None |
|
| 69 | ||
| 70 | self.best_score = self.gfo_optimizer.best_score |
|
| 71 | self.positions = self.gfo_optimizer.search_data |
|
| 72 | self.search_data = self.hg_conv.positions2results(self.positions) |
|
| 73 | ||
| 74 | results_dd = self.gfo_optimizer.search_data.drop_duplicates( |
|
| 75 | subset=self.s_space.dim_keys, keep="first" |
|
| 76 | ) |
|
| 77 | self.memory_values_df = results_dd[ |
|
| 78 | self.s_space.dim_keys + ["score"] |
|
| 79 | ].reset_index(drop=True) |
|
| 80 | ||
| 81 | def _setup_process(self): |
|
| 82 | self.hg_conv = HyperGradientConv(self.s_space) |
|