Total Complexity | 1 |
Total Lines | 31 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.model_selection import cross_val_score |
||
2 | from xgboost import XGBClassifier |
||
3 | from sklearn.datasets import load_breast_cancer |
||
4 | from hyperactive import Hyperactive |
||
5 | |||
6 | data = load_breast_cancer() |
||
7 | X, y = data.data, data.target |
||
8 | |||
9 | |||
10 | def model(opt): |
||
11 | xgb = XGBClassifier( |
||
12 | n_estimators=opt["n_estimators"], |
||
13 | max_depth=opt["max_depth"], |
||
14 | learning_rate=opt["learning_rate"], |
||
15 | ) |
||
16 | scores = cross_val_score(xgb, X, y, cv=3) |
||
17 | |||
18 | return scores.mean() |
||
19 | |||
20 | |||
21 | search_space = { |
||
22 | "n_estimators": list(range(10, 200, 10)), |
||
23 | "max_depth": list(range(2, 12)), |
||
24 | "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0], |
||
25 | } |
||
26 | |||
27 | |||
28 | hyper = Hyperactive() |
||
29 | hyper.add_search(model, search_space, n_iter=30) |
||
30 | hyper.run() |
||
31 |