Total Complexity | 1 |
Total Lines | 36 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.datasets import load_diabetes |
||
2 | from sklearn.tree import DecisionTreeRegressor |
||
3 | from sklearn.model_selection import cross_val_score |
||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | |||
7 | |||
8 | def test_issue_29(): |
||
9 | data = load_diabetes() |
||
10 | X, y = data.data, data.target |
||
11 | |||
12 | def model(para): |
||
13 | dtr = DecisionTreeRegressor( |
||
14 | min_samples_split=para["min_samples_split"], |
||
15 | max_depth=para["max_depth"], |
||
16 | ) |
||
17 | scores = cross_val_score(dtr, X, y, cv=3) |
||
18 | |||
19 | print( |
||
20 | "Iteration:", |
||
21 | para.optimizer.nth_iter, |
||
22 | " Best score", |
||
23 | para.optimizer.best_score, |
||
24 | ) |
||
25 | |||
26 | return scores.mean() |
||
27 | |||
28 | search_space = { |
||
29 | "min_samples_split": list(range(2, 12)), |
||
30 | "max_depth": list(range(2, 12)), |
||
31 | } |
||
32 | |||
33 | hyper = Hyperactive() |
||
34 | hyper.add_search(model, search_space, n_iter=20) |
||
35 | hyper.run() |
||
36 |