tests.integrations.sklearn.test_parametrize_with_checks   A
last analyzed

Complexity

Total Complexity 1

Size/Duplication

Total Lines 26
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 1
eloc 17
dl 0
loc 26
rs 10
c 0
b 0
f 0

1 Function

Rating   Name   Duplication   Size   Complexity  
A test_estimators() 0 4 1
1
"""Test module for sklearn parametrize_with_checks integration."""
2
3
from sklearn import svm
4
from sklearn.model_selection import KFold
5
from sklearn.utils.estimator_checks import parametrize_with_checks
6
7
from hyperactive.integrations import HyperactiveSearchCV, OptCV
8
from hyperactive.opt import GridSearchSk as GridSearch
9
from hyperactive.optimizers import RandomSearchOptimizer
10
11
svc = svm.SVC()
12
parameters = {"kernel": ["linear", "rbf"], "C": [1, 10]}
13
opt = RandomSearchOptimizer()
14
hyperactivecv = HyperactiveSearchCV(svc, parameters, opt)
15
16
cv = KFold(n_splits=2, shuffle=True, random_state=42)
17
optcv = OptCV(estimator=svc, optimizer=GridSearch(param_grid=parameters), cv=cv)
18
19
ESTIMATORS = [hyperactivecv, optcv]
20
21
22
@parametrize_with_checks(ESTIMATORS)
23
def test_estimators(estimator, check):
24
    """Test estimators with sklearn estimator checks."""
25
    check(estimator)
26