|
1
|
|
|
import numpy as np |
|
2
|
|
|
import pytest |
|
3
|
|
|
|
|
4
|
|
|
from hyperactive import Hyperactive |
|
5
|
|
|
from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
|
6
|
|
|
|
|
7
|
|
|
from ._parametrize import optimizers, optimizers_strat |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
def objective_function(opt): |
|
11
|
|
|
score = -(opt["x1"] * opt["x1"] + opt["x2"] * opt["x2"]) |
|
12
|
|
|
return score |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
search_space = { |
|
16
|
|
|
"x1": list(np.arange(-3, 3, 1)), |
|
17
|
|
|
"x2": list(np.arange(-3, 3, 1)), |
|
18
|
|
|
} |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
|
|
22
|
|
|
@pytest.mark.parametrize(*optimizers_strat) |
|
23
|
|
|
def test_strategy_combinations_0(Optimizer, Optimizer_strat): |
|
24
|
|
|
optimizer1 = Optimizer() |
|
25
|
|
|
optimizer2 = Optimizer_strat() |
|
26
|
|
|
|
|
27
|
|
|
opt_strat = CustomOptimizationStrategy() |
|
28
|
|
|
opt_strat.add_optimizer(optimizer1, duration=0.5) |
|
29
|
|
|
opt_strat.add_optimizer(optimizer2, duration=0.5) |
|
30
|
|
|
|
|
31
|
|
|
n_iter = 30 |
|
32
|
|
|
|
|
33
|
|
|
hyper = Hyperactive() |
|
34
|
|
|
hyper.add_search( |
|
35
|
|
|
objective_function, |
|
36
|
|
|
search_space, |
|
37
|
|
|
optimizer=opt_strat, |
|
38
|
|
|
n_iter=n_iter, |
|
39
|
|
|
memory=False, |
|
40
|
|
|
) |
|
41
|
|
|
hyper.run() |
|
42
|
|
|
|
|
43
|
|
|
search_data = hyper.search_data(objective_function) |
|
44
|
|
|
|
|
45
|
|
|
optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
46
|
|
|
optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
47
|
|
|
|
|
48
|
|
|
assert len(search_data) == n_iter |
|
49
|
|
|
|
|
50
|
|
|
assert len(optimizer1.search_data) == 15 |
|
51
|
|
|
assert len(optimizer2.search_data) == 15 |
|
52
|
|
|
|
|
53
|
|
|
assert optimizer1.best_score <= optimizer2.best_score |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
|
|
57
|
|
|
@pytest.mark.parametrize(*optimizers_strat) |
|
58
|
|
|
def test_strategy_combinations_1(Optimizer, Optimizer_strat): |
|
59
|
|
|
optimizer1 = Optimizer() |
|
60
|
|
|
optimizer2 = Optimizer_strat() |
|
61
|
|
|
|
|
62
|
|
|
opt_strat = CustomOptimizationStrategy() |
|
63
|
|
|
opt_strat.add_optimizer(optimizer1, duration=0.1) |
|
64
|
|
|
opt_strat.add_optimizer(optimizer2, duration=0.9) |
|
65
|
|
|
|
|
66
|
|
|
n_iter = 10 |
|
67
|
|
|
|
|
68
|
|
|
hyper = Hyperactive() |
|
69
|
|
|
hyper.add_search( |
|
70
|
|
|
objective_function, |
|
71
|
|
|
search_space, |
|
72
|
|
|
optimizer=opt_strat, |
|
73
|
|
|
n_iter=n_iter, |
|
74
|
|
|
memory=False, |
|
75
|
|
|
) |
|
76
|
|
|
hyper.run() |
|
77
|
|
|
|
|
78
|
|
|
search_data = hyper.search_data(objective_function) |
|
79
|
|
|
|
|
80
|
|
|
optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
81
|
|
|
optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
82
|
|
|
|
|
83
|
|
|
assert len(search_data) == n_iter |
|
84
|
|
|
|
|
85
|
|
|
assert len(optimizer1.search_data) == 1 |
|
86
|
|
|
assert len(optimizer2.search_data) == 9 |
|
87
|
|
|
|
|
88
|
|
|
assert optimizer1.best_score <= optimizer2.best_score |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
|
|
92
|
|
|
@pytest.mark.parametrize(*optimizers_strat) |
|
93
|
|
|
def test_strategy_combinations_2(Optimizer, Optimizer_strat): |
|
94
|
|
|
optimizer1 = Optimizer() |
|
95
|
|
|
optimizer2 = Optimizer_strat() |
|
96
|
|
|
|
|
97
|
|
|
opt_strat = CustomOptimizationStrategy() |
|
98
|
|
|
opt_strat.add_optimizer(optimizer1, duration=0.9) |
|
99
|
|
|
opt_strat.add_optimizer(optimizer2, duration=0.1) |
|
100
|
|
|
|
|
101
|
|
|
n_iter = 10 |
|
102
|
|
|
|
|
103
|
|
|
hyper = Hyperactive() |
|
104
|
|
|
hyper.add_search( |
|
105
|
|
|
objective_function, |
|
106
|
|
|
search_space, |
|
107
|
|
|
optimizer=opt_strat, |
|
108
|
|
|
n_iter=n_iter, |
|
109
|
|
|
memory=False, |
|
110
|
|
|
) |
|
111
|
|
|
hyper.run() |
|
112
|
|
|
|
|
113
|
|
|
search_data = hyper.search_data(objective_function) |
|
114
|
|
|
|
|
115
|
|
|
optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
116
|
|
|
optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
117
|
|
|
|
|
118
|
|
|
assert len(search_data) == n_iter |
|
119
|
|
|
|
|
120
|
|
|
assert len(optimizer1.search_data) == 9 |
|
121
|
|
|
assert len(optimizer2.search_data) == 1 |
|
122
|
|
|
|
|
123
|
|
|
assert optimizer1.best_score <= optimizer2.best_score |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
@pytest.mark.parametrize(*optimizers) |
|
127
|
|
|
@pytest.mark.parametrize(*optimizers_strat) |
|
128
|
|
|
def test_strategy_combinations_3(Optimizer, Optimizer_strat): |
|
129
|
|
|
optimizer1 = Optimizer() |
|
130
|
|
|
optimizer2 = Optimizer_strat() |
|
131
|
|
|
optimizer3 = Optimizer_strat() |
|
132
|
|
|
|
|
133
|
|
|
opt_strat = CustomOptimizationStrategy() |
|
134
|
|
|
opt_strat.add_optimizer(optimizer1, duration=10) |
|
135
|
|
|
opt_strat.add_optimizer(optimizer2, duration=20) |
|
136
|
|
|
opt_strat.add_optimizer(optimizer3, duration=30) |
|
137
|
|
|
|
|
138
|
|
|
n_iter = 100 |
|
139
|
|
|
|
|
140
|
|
|
hyper = Hyperactive() |
|
141
|
|
|
hyper.add_search( |
|
142
|
|
|
objective_function, |
|
143
|
|
|
search_space, |
|
144
|
|
|
optimizer=opt_strat, |
|
145
|
|
|
n_iter=n_iter, |
|
146
|
|
|
memory=False, |
|
147
|
|
|
) |
|
148
|
|
|
hyper.run() |
|
149
|
|
|
|
|
150
|
|
|
search_data = hyper.search_data(objective_function) |
|
151
|
|
|
|
|
152
|
|
|
optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
|
153
|
|
|
optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
|
154
|
|
|
optimizer3 = hyper.opt_pros[0].optimizer_setup_l[2]["optimizer"] |
|
155
|
|
|
|
|
156
|
|
|
assert len(search_data) == n_iter |
|
157
|
|
|
|
|
158
|
|
|
assert len(optimizer1.search_data) == round(n_iter * 10 / 60) |
|
159
|
|
|
assert len(optimizer2.search_data) == round(n_iter * 20 / 60) |
|
160
|
|
|
assert len(optimizer3.search_data) == round(n_iter * 30 / 60) |
|
161
|
|
|
|
|
162
|
|
|
assert optimizer1.best_score <= optimizer2.best_score <= optimizer3.best_score |
|
163
|
|
|
|