Total Complexity | 1 |
Total Lines | 34 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.datasets import load_breast_cancer |
||
2 | from sklearn.model_selection import cross_val_score |
||
3 | from rgf.sklearn import RGFClassifier |
||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | |||
7 | data = load_breast_cancer() |
||
8 | X, y = data.data, data.target |
||
9 | |||
10 | |||
11 | def model(opt): |
||
12 | rgf = RGFClassifier( |
||
13 | max_leaf=opt["max_leaf"], |
||
14 | reg_depth=opt["reg_depth"], |
||
15 | min_samples_leaf=opt["min_samples_leaf"], |
||
16 | algorithm="RGF_Sib", |
||
17 | test_interval=100, |
||
18 | verbose=False, |
||
19 | ) |
||
20 | scores = cross_val_score(rgf, X, y, cv=3) |
||
21 | |||
22 | return scores.mean() |
||
23 | |||
24 | |||
25 | search_space = { |
||
26 | "max_leaf": list(range(10, 2000, 10)), |
||
27 | "reg_depth": list(range(1, 21)), |
||
28 | "min_samples_leaf": list(range(1, 21)), |
||
29 | } |
||
30 | |||
31 | hyper = Hyperactive() |
||
32 | hyper.add_search(model, search_space, n_iter=10) |
||
33 | hyper.run() |
||
34 |