| Total Complexity | 1 |
| Total Lines | 38 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | from sklearn.datasets import load_iris |
||
| 2 | from sklearn.neighbors import KNeighborsClassifier |
||
| 3 | from sklearn.model_selection import cross_val_score |
||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | from hyperactive.optimizers import RandomAnnealingOptimizer |
||
| 7 | |||
| 8 | |||
| 9 | data = load_iris() |
||
| 10 | X, y = data.data, data.target |
||
| 11 | |||
| 12 | |||
| 13 | def model(opt): |
||
| 14 | knr = KNeighborsClassifier(n_neighbors=opt["n_neighbors"]) |
||
| 15 | scores = cross_val_score(knr, X, y, cv=5) |
||
| 16 | score = scores.mean() |
||
| 17 | |||
| 18 | return score |
||
| 19 | |||
| 20 | |||
| 21 | search_space = { |
||
| 22 | "n_neighbors": list(range(1, 100)), |
||
| 23 | } |
||
| 24 | |||
| 25 | |||
| 26 | optimizer = RandomAnnealingOptimizer( |
||
| 27 | epsilon=0.1, |
||
| 28 | distribution="laplace", |
||
| 29 | n_neighbours=4, |
||
| 30 | rand_rest_p=0.1, |
||
| 31 | annealing_rate=0.999, |
||
| 32 | start_temp=0.8, |
||
| 33 | ) |
||
| 34 | |||
| 35 | hyper = Hyperactive() |
||
| 36 | hyper.add_search(model, search_space, optimizer=optimizer, n_iter=100) |
||
| 37 | hyper.run() |
||
| 38 |