| Total Complexity | 1 |
| Total Lines | 41 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | |||
| 3 | from hyperactive import Hyperactive |
||
| 4 | |||
| 5 | |||
| 6 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
| 7 | from hyperactive.optimizers import ( |
||
| 8 | HillClimbingOptimizer, |
||
| 9 | RandomSearchOptimizer, |
||
| 10 | BayesianOptimizer, |
||
| 11 | ) |
||
| 12 | |||
| 13 | |||
| 14 | opt_strat = CustomOptimizationStrategy() |
||
| 15 | opt_strat.add_optimizer( |
||
| 16 | RandomSearchOptimizer(), duration=0.5, early_stopping={"n_iter_no_change": 10} |
||
| 17 | ) |
||
| 18 | opt_strat.add_optimizer( |
||
| 19 | HillClimbingOptimizer(), duration=0.5, early_stopping={"n_iter_no_change": 10} |
||
| 20 | ) |
||
| 21 | |||
| 22 | |||
| 23 | def objective_function(opt): |
||
| 24 | score = -opt["x1"] * opt["x1"] |
||
| 25 | return score, {"additional stuff": 1} |
||
| 26 | |||
| 27 | |||
| 28 | search_space = {"x1": list(np.arange(-100, 101, 1))} |
||
| 29 | n_iter = 100 |
||
| 30 | optimizer = opt_strat |
||
| 31 | |||
| 32 | hyper = Hyperactive() |
||
| 33 | hyper.add_search( |
||
| 34 | objective_function, |
||
| 35 | search_space, |
||
| 36 | n_iter=n_iter, |
||
| 37 | n_jobs=1, |
||
| 38 | optimizer=optimizer, |
||
| 39 | ) |
||
| 40 | hyper.run() |
||
| 41 |