1
|
|
|
import numpy as np |
2
|
|
|
from keras.models import Sequential |
3
|
|
|
from keras.layers import ( |
4
|
|
|
Dense, |
5
|
|
|
Conv2D, |
6
|
|
|
MaxPooling2D, |
7
|
|
|
Flatten, |
8
|
|
|
Activation, |
9
|
|
|
Dropout, |
10
|
|
|
) |
11
|
|
|
from keras.datasets import cifar10 |
12
|
|
|
from keras.utils import to_categorical |
13
|
|
|
|
14
|
|
|
from hyperactive import Hyperactive |
15
|
|
|
|
16
|
|
|
(X_train, y_train), (X_test, y_test) = cifar10.load_data() |
17
|
|
|
|
18
|
|
|
y_train = to_categorical(y_train, 10) |
19
|
|
|
y_test = to_categorical(y_test, 10) |
20
|
|
|
|
21
|
|
|
# to make the example quick |
22
|
|
|
X_train = X_train[0:1000] |
23
|
|
|
y_train = y_train[0:1000] |
24
|
|
|
|
25
|
|
|
X_test = X_test[0:1000] |
26
|
|
|
y_test = y_test[0:1000] |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def conv1(nn): |
30
|
|
|
nn.add(Conv2D(32, (3, 3))) |
31
|
|
|
nn.add(Activation("relu")) |
32
|
|
|
nn.add(MaxPooling2D(pool_size=(2, 2))) |
33
|
|
|
return nn |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def conv2(nn): |
37
|
|
|
nn.add(Conv2D(32, (3, 3))) |
38
|
|
|
nn.add(Activation("relu")) |
39
|
|
|
return nn |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
def conv3(nn): |
43
|
|
|
return nn |
44
|
|
|
|
45
|
|
|
|
46
|
|
|
def cnn(opt): |
47
|
|
|
nn = Sequential() |
48
|
|
|
nn.add( |
49
|
|
|
Conv2D( |
50
|
|
|
opt["filters.0"], |
51
|
|
|
(3, 3), |
52
|
|
|
padding="same", |
53
|
|
|
input_shape=X_train.shape[1:], |
54
|
|
|
) |
55
|
|
|
) |
56
|
|
|
nn.add(Activation("relu")) |
57
|
|
|
nn.add(Conv2D(opt["filters.0"], (3, 3))) |
58
|
|
|
nn.add(Activation("relu")) |
59
|
|
|
nn.add(MaxPooling2D(pool_size=(2, 2))) |
60
|
|
|
nn.add(Dropout(0.25)) |
61
|
|
|
|
62
|
|
|
nn.add(Conv2D(opt["filters.0"], (3, 3), padding="same")) |
63
|
|
|
nn.add(Activation("relu")) |
64
|
|
|
nn = opt["conv_layer.0"](nn) |
65
|
|
|
nn.add(Dropout(0.25)) |
66
|
|
|
|
67
|
|
|
nn.add(Flatten()) |
68
|
|
|
nn.add(Dense(opt["neurons.0"])) |
69
|
|
|
nn.add(Activation("relu")) |
70
|
|
|
nn.add(Dropout(0.5)) |
71
|
|
|
nn.add(Dense(10)) |
72
|
|
|
nn.add(Activation("softmax")) |
73
|
|
|
|
74
|
|
|
nn.compile( |
75
|
|
|
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] |
76
|
|
|
) |
77
|
|
|
nn.fit(X_train, y_train, epochs=5, batch_size=256) |
78
|
|
|
|
79
|
|
|
_, score = nn.evaluate(x=X_test, y=y_test) |
80
|
|
|
|
81
|
|
|
return score |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
search_space = { |
85
|
|
|
"conv_layer.0": [conv1, conv2, conv3], |
86
|
|
|
"filters.0": [16, 32, 64, 128], |
87
|
|
|
"neurons.0": list(range(100, 1000, 100)), |
88
|
|
|
} |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
hyper = Hyperactive() |
92
|
|
|
hyper.add_search(cnn, search_space, n_iter=5) |
93
|
|
|
hyper.run() |
94
|
|
|
|