|
1
|
|
|
from sklearn.model_selection import cross_val_score |
|
2
|
|
|
|
|
3
|
|
|
from sklearn.svm import SVR |
|
4
|
|
|
from sklearn.neighbors import KNeighborsRegressor |
|
5
|
|
|
from sklearn.gaussian_process import GaussianProcessRegressor |
|
6
|
|
|
from sklearn.tree import DecisionTreeRegressor |
|
7
|
|
|
from sklearn.ensemble import ( |
|
8
|
|
|
GradientBoostingRegressor, |
|
9
|
|
|
RandomForestRegressor, |
|
10
|
|
|
ExtraTreesRegressor, |
|
11
|
|
|
) |
|
12
|
|
|
from sklearn.neural_network import MLPRegressor |
|
13
|
|
|
|
|
14
|
|
|
from sklearn.datasets import load_diabetes |
|
15
|
|
|
from hyperactive import Hyperactive |
|
16
|
|
|
|
|
17
|
|
|
data = load_diabetes() |
|
18
|
|
|
X, y = data.data, data.target |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
def model(opt): |
|
22
|
|
|
model_class = opt["regressor"]() |
|
23
|
|
|
model = model_class() |
|
24
|
|
|
scores = cross_val_score(model, X, y, cv=5) |
|
25
|
|
|
|
|
26
|
|
|
return scores.mean() |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
def SVR_f(): |
|
30
|
|
|
return SVR |
|
31
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
def KNeighborsRegressor_f(): |
|
34
|
|
|
return KNeighborsRegressor |
|
35
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
def GaussianProcessRegressor_f(): |
|
38
|
|
|
return GaussianProcessRegressor |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
def DecisionTreeRegressor_f(): |
|
42
|
|
|
return DecisionTreeRegressor |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
def GradientBoostingRegressor_f(): |
|
46
|
|
|
return GradientBoostingRegressor |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
def RandomForestRegressor_f(): |
|
50
|
|
|
return RandomForestRegressor |
|
51
|
|
|
|
|
52
|
|
|
|
|
53
|
|
|
def ExtraTreesRegressor_f(): |
|
54
|
|
|
return ExtraTreesRegressor |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
def MLPRegressor_f(): |
|
58
|
|
|
return MLPRegressor |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
search_space = { |
|
62
|
|
|
"regressor": [ |
|
63
|
|
|
SVR_f, |
|
64
|
|
|
KNeighborsRegressor_f, |
|
65
|
|
|
GaussianProcessRegressor_f, |
|
66
|
|
|
DecisionTreeRegressor_f, |
|
67
|
|
|
GradientBoostingRegressor_f, |
|
68
|
|
|
RandomForestRegressor_f, |
|
69
|
|
|
ExtraTreesRegressor_f, |
|
70
|
|
|
MLPRegressor_f, |
|
71
|
|
|
], |
|
72
|
|
|
} |
|
73
|
|
|
|
|
74
|
|
|
|
|
75
|
|
|
hyper = Hyperactive() |
|
76
|
|
|
hyper.add_search(model, search_space, n_iter=50) |
|
77
|
|
|
hyper.run() |
|
78
|
|
|
|