|
1
|
|
|
from sklearn.datasets import load_breast_cancer |
|
2
|
|
|
from sklearn.model_selection import cross_val_score |
|
3
|
|
|
from mlxtend.classifier import EnsembleVoteClassifier |
|
4
|
|
|
from sklearn.tree import DecisionTreeClassifier |
|
5
|
|
|
from sklearn.neural_network import MLPClassifier |
|
6
|
|
|
from sklearn.svm import SVC |
|
7
|
|
|
from hyperactive import Hyperactive |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
data = load_breast_cancer() |
|
11
|
|
|
X, y = data.data, data.target |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
def model(opt): |
|
15
|
|
|
dtc = DecisionTreeClassifier( |
|
16
|
|
|
min_samples_split=opt["min_samples_split"], |
|
17
|
|
|
min_samples_leaf=opt["min_samples_leaf"], |
|
18
|
|
|
) |
|
19
|
|
|
mlp = MLPClassifier(hidden_layer_sizes=opt["hidden_layer_sizes"]) |
|
20
|
|
|
svc = SVC(C=opt["C"], degree=opt["degree"], gamma="auto", probability=True) |
|
21
|
|
|
|
|
22
|
|
|
eclf = EnsembleVoteClassifier( |
|
23
|
|
|
clfs=[dtc, mlp, svc], weights=opt["weights"], voting="soft", |
|
24
|
|
|
) |
|
25
|
|
|
|
|
26
|
|
|
scores = cross_val_score(eclf, X, y, cv=3) |
|
27
|
|
|
|
|
28
|
|
|
return scores.mean() |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
|
|
search_space = { |
|
32
|
|
|
"min_samples_split": list(range(2, 15)), |
|
33
|
|
|
"min_samples_leaf": list(range(1, 15)), |
|
34
|
|
|
"hidden_layer_sizes": list(range(5, 50, 5)), |
|
35
|
|
|
"weights": [[1, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2]], |
|
36
|
|
|
"C": list(range(1, 1000)), |
|
37
|
|
|
"degree": list(range(0, 8)), |
|
38
|
|
|
} |
|
39
|
|
|
|
|
40
|
|
|
|
|
41
|
|
|
hyper = Hyperactive() |
|
42
|
|
|
hyper.add_search(model, search_space, n_iter=25) |
|
43
|
|
|
hyper.run() |
|
44
|
|
|
|