| Total Complexity | 2 |
| Total Lines | 63 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | from hyperactive import Hyperactive |
||
| 3 | from hyperactive.optimizers import BayesianOptimizer |
||
| 4 | |||
| 5 | |||
| 6 | from gradient_free_optimizers import RandomRestartHillClimbingOptimizer |
||
| 7 | |||
| 8 | |||
| 9 | def meta_opt(opt_para): |
||
| 10 | scores = [] |
||
| 11 | |||
| 12 | for i in range(33): |
||
| 13 | |||
| 14 | def ackley_function(para): |
||
| 15 | x = para["x"] |
||
| 16 | y = para["y"] |
||
| 17 | loss1 = -20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
||
| 18 | loss2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
||
| 19 | loss3 = np.exp(1) |
||
| 20 | loss4 = 20 |
||
| 21 | |||
| 22 | loss = loss1 + loss2 + loss3 + loss4 |
||
| 23 | |||
| 24 | return -loss |
||
| 25 | |||
| 26 | dim_size = np.arange(-6, 6, 0.01) |
||
| 27 | |||
| 28 | search_space = { |
||
| 29 | "x": dim_size, |
||
| 30 | "y": dim_size, |
||
| 31 | } |
||
| 32 | |||
| 33 | opt = RandomRestartHillClimbingOptimizer( |
||
| 34 | search_space, |
||
| 35 | random_state=i, |
||
| 36 | epsilon=opt_para["epsilon"], |
||
| 37 | n_neighbours=opt_para["n_neighbours"], |
||
| 38 | n_iter_restart=opt_para["n_iter_restart"], |
||
| 39 | ) |
||
| 40 | opt.search( |
||
| 41 | ackley_function, |
||
| 42 | n_iter=100, |
||
| 43 | verbosity=False, |
||
| 44 | ) |
||
| 45 | |||
| 46 | scores.append(opt.best_score) |
||
| 47 | |||
| 48 | return np.array(scores).sum() |
||
| 49 | |||
| 50 | |||
| 51 | search_space = { |
||
| 52 | "epsilon": list(np.arange(0.01, 0.1, 0.01)), |
||
| 53 | "n_neighbours": list(range(1, 10)), |
||
| 54 | "n_iter_restart": list(range(2, 12)), |
||
| 55 | } |
||
| 56 | |||
| 57 | |||
| 58 | optimizer = BayesianOptimizer() |
||
| 59 | |||
| 60 | hyper = Hyperactive() |
||
| 61 | hyper.add_search(meta_opt, search_space, n_iter=120, optimizer=optimizer) |
||
| 62 | hyper.run() |
||
| 63 |