lightgbm_example   A
last analyzed

Complexity

Total Complexity 1

Size/Duplication

Total Lines 31
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 21
dl 0
loc 31
rs 10
c 0
b 0
f 0
wmc 1

1 Function

Rating   Name   Duplication   Size   Complexity  
A model() 0 9 1
1
from sklearn.model_selection import cross_val_score
2
from lightgbm import LGBMRegressor
3
from sklearn.datasets import load_diabetes
4
from hyperactive import Hyperactive
5
6
data = load_diabetes()
7
X, y = data.data, data.target
8
9
10
def model(opt):
11
    lgbm = LGBMRegressor(
12
        num_leaves=opt["num_leaves"],
13
        bagging_freq=opt["bagging_freq"],
14
        learning_rate=opt["learning_rate"],
15
    )
16
    scores = cross_val_score(lgbm, X, y, cv=3)
17
18
    return scores.mean()
19
20
21
search_space = {
22
    "num_leaves": list(range(2, 50)),
23
    "bagging_freq": list(range(2, 12)),
24
    "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0],
25
}
26
27
28
hyper = Hyperactive()
29
hyper.add_search(model, search_space, n_iter=20)
30
hyper.run()
31