hyperactive.opt.gfo._hillclimbing   A
last analyzed

Complexity

Total Complexity 2

Size/Duplication

Total Lines 127
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 2
eloc 36
dl 0
loc 127
rs 10
c 0
b 0
f 0

2 Methods

Rating   Name   Duplication   Size   Complexity  
A HillClimbing._get_gfo_class() 0 11 1
A HillClimbing.__init__() 0 27 1
1
"""Hill climbing optimizer from gfo."""
2
3
# copyright: hyperactive developers, MIT License (see LICENSE file)
4
5
from hyperactive.opt._adapters._gfo import _BaseGFOadapter
6
7
8
class HillClimbing(_BaseGFOadapter):
9
    """Hill climbing optimizer.
10
11
    Parameters
12
    ----------
13
    search_space : dict[str, list]
14
        The search space to explore. A dictionary with parameter
15
        names as keys and a numpy array as values.
16
        Optional, can be passed later via ``set_params``.
17
    initialize : dict[str, int], default={"grid": 4, "random": 2, "vertices": 4}
18
        The method to generate initial positions. A dictionary with
19
        the following key literals and the corresponding value type:
20
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
21
    constraints : list[callable], default=[]
22
        A list of constraints, where each constraint is a callable.
23
        The callable returns `True` or `False` dependend on the input parameters.
24
    random_state : None, int, default=None
25
        If None, create a new random state. If int, create a new random state
26
        seeded with the value.
27
    rand_rest_p : float, default=0.1
28
        The probability of a random iteration during the the search process.
29
    epsilon : float, default=0.01
30
        The step-size for the climbing.
31
    distribution : str, default="normal"
32
        The type of distribution to sample from.
33
    n_neighbours : int, default=10
34
        The number of neighbours to sample and evaluate before moving to the best
35
        of those neighbours.
36
    n_iter : int, default=100
37
        The number of iterations to run the optimizer.
38
    verbose : bool, default=False
39
        If True, print the progress of the optimization process.
40
    experiment : BaseExperiment, optional
41
        The experiment to optimize parameters for.
42
        Optional, can be passed later via ``set_params``.
43
44
    Examples
45
    --------
46
    Hill climbing applied to scikit-learn parameter tuning:
47
48
    1. defining the experiment to optimize:
49
    >>> from hyperactive.experiment.integrations import SklearnCvExperiment
50
    >>> from sklearn.datasets import load_iris
51
    >>> from sklearn.svm import SVC
52
    >>>
53
    >>> X, y = load_iris(return_X_y=True)
54
    >>>
55
    >>> sklearn_exp = SklearnCvExperiment(
56
    ...     estimator=SVC(),
57
    ...     X=X,
58
    ...     y=y,
59
    ... )
60
61
    2. setting up the hill climbing optimizer:
62
    >>> from hyperactive.opt import HillClimbing
63
    >>> import numpy as np
64
    >>>
65
    >>> config = {
66
    ...     "search_space": {
67
    ...         "C": [0.01, 0.1, 1, 10],
68
    ...         "gamma": [0.0001, 0.01, 0.1, 1, 10],
69
    ...     },
70
    ...     "n_iter": 100,
71
    ... }
72
    >>> hillclimbing = HillClimbing(experiment=sklearn_exp, **config)
73
74
    3. running the hill climbing search:
75
    >>> best_params = hillclimbing.solve()
76
77
    Best parameters can also be accessed via the attributes:
78
    >>> best_params = hillclimbing.best_params_
79
    """
80
81
    _tags = {
82
        "info:name": "Hill Climbing",
83
        "info:local_vs_global": "local",  # "local", "mixed", "global"
84
        "info:explore_vs_exploit": "exploit",  # "explore", "exploit", "mixed"
85
        "info:compute": "low",  # "low", "middle", "high"
86
    }
87
88
    def __init__(
89
        self,
90
        search_space=None,
91
        initialize=None,
92
        constraints=None,
93
        random_state=None,
94
        rand_rest_p=0.1,
95
        epsilon=0.01,
96
        distribution="normal",
97
        n_neighbours=10,
98
        n_iter=100,
99
        verbose=False,
100
        experiment=None,
101
    ):
102
        self.random_state = random_state
103
        self.rand_rest_p = rand_rest_p
104
        self.epsilon = epsilon
105
        self.distribution = distribution
106
        self.n_neighbours = n_neighbours
107
        self.search_space = search_space
108
        self.initialize = initialize
109
        self.constraints = constraints
110
        self.n_iter = n_iter
111
        self.experiment = experiment
112
        self.verbose = verbose
113
114
        super().__init__()
115
116
    def _get_gfo_class(self):
117
        """Get the GFO class to use.
118
119
        Returns
120
        -------
121
        class
122
            The GFO class to use. One of the concrete GFO classes
123
        """
124
        from gradient_free_optimizers import HillClimbingOptimizer
125
126
        return HillClimbingOptimizer
127