forest_optimization   A
last analyzed

Complexity

Total Complexity 1

Size/Duplication

Total Lines 41
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 27
dl 0
loc 41
rs 10
c 0
b 0
f 0
wmc 1

1 Function

Rating   Name   Duplication   Size   Complexity  
A model() 0 6 1
1
from sklearn.datasets import load_iris
2
from sklearn.neighbors import KNeighborsClassifier
3
from sklearn.model_selection import cross_val_score
4
5
from hyperactive import Hyperactive
6
from hyperactive.optimizers import ForestOptimizer
7
8
9
data = load_iris()
10
X, y = data.data, data.target
11
12
13
def model(opt):
14
    knr = KNeighborsClassifier(n_neighbors=opt["n_neighbors"])
15
    scores = cross_val_score(knr, X, y, cv=5)
16
    score = scores.mean()
17
18
    return score
19
20
21
search_space = {
22
    "n_neighbors": list(range(1, 100)),
23
}
24
25
hyper = Hyperactive()
26
hyper.add_search(model, search_space, n_iter=100)
27
hyper.run()
28
29
search_data = hyper.search_data(model)
30
31
optimizer = ForestOptimizer(
32
    tree_regressor="random_forest",
33
    xi=0.02,
34
    warm_start_smbo=search_data,
35
    rand_rest_p=0.05,
36
)
37
38
hyper = Hyperactive()
39
hyper.add_search(model, search_space, optimizer=optimizer, n_iter=100)
40
hyper.run()
41