catboost_example   A
last analyzed

Complexity

Total Complexity 1

Size/Duplication

Total Lines 28
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 18
dl 0
loc 28
rs 10
c 0
b 0
f 0
wmc 1

1 Function

Rating   Name   Duplication   Size   Complexity  
A model() 0 7 1
1
from sklearn.model_selection import cross_val_score
2
from catboost import CatBoostClassifier
3
from sklearn.datasets import load_breast_cancer
4
from hyperactive import Hyperactive
5
6
data = load_breast_cancer()
7
X, y = data.data, data.target
8
9
10
def model(opt):
11
    cbc = CatBoostClassifier(
12
        iterations=10, depth=opt["depth"], learning_rate=opt["learning_rate"]
13
    )
14
    scores = cross_val_score(cbc, X, y, cv=3)
15
16
    return scores.mean()
17
18
19
search_space = {
20
    "depth": list(range(2, 12)),
21
    "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0],
22
}
23
24
25
hyper = Hyperactive()
26
hyper.add_search(model, search_space, n_iter=10)
27
hyper.run()
28