Total Complexity | 1 |
Total Lines | 28 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.model_selection import cross_val_score |
||
2 | from catboost import CatBoostClassifier |
||
3 | from sklearn.datasets import load_breast_cancer |
||
4 | from hyperactive import Hyperactive |
||
5 | |||
6 | data = load_breast_cancer() |
||
7 | X, y = data.data, data.target |
||
8 | |||
9 | |||
10 | def model(opt): |
||
11 | cbc = CatBoostClassifier( |
||
12 | iterations=10, depth=opt["depth"], learning_rate=opt["learning_rate"] |
||
13 | ) |
||
14 | scores = cross_val_score(cbc, X, y, cv=3) |
||
15 | |||
16 | return scores.mean() |
||
17 | |||
18 | |||
19 | search_space = { |
||
20 | "depth": list(range(2, 12)), |
||
21 | "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0], |
||
22 | } |
||
23 | |||
24 | |||
25 | hyper = Hyperactive() |
||
26 | hyper.add_search(model, search_space, n_iter=10) |
||
27 | hyper.run() |
||
28 |