| Total Complexity | 0 |
| Total Lines | 38 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | from sklearn.datasets import load_diabetes |
||
| 3 | from sklearn.tree import DecisionTreeRegressor |
||
| 4 | |||
| 5 | |||
| 6 | from hyperactive.search_config import SearchConfig |
||
| 7 | from hyperactive.optimization.gradient_free_optimizers import ( |
||
| 8 | HillClimbingOptimizer, |
||
| 9 | RandomRestartHillClimbingOptimizer, |
||
| 10 | RandomSearchOptimizer, |
||
| 11 | ) |
||
| 12 | from hyperactive.optimization.talos import TalosOptimizer |
||
| 13 | |||
| 14 | from experiments.sklearn import SklearnExperiment |
||
| 15 | from experiments.test_function import AckleyFunction |
||
| 16 | |||
| 17 | |||
| 18 | data = load_diabetes() |
||
| 19 | X, y = data.data, data.target |
||
| 20 | |||
| 21 | |||
| 22 | search_config1 = SearchConfig( |
||
| 23 | max_depth=list(np.arange(2, 15, 1)), |
||
| 24 | min_samples_split=list(np.arange(2, 25, 2)), |
||
| 25 | ) |
||
| 26 | |||
| 27 | |||
| 28 | TalosOptimizer() |
||
| 29 | |||
| 30 | experiment1 = SklearnExperiment() |
||
| 31 | experiment1.setup(DecisionTreeRegressor, X, y, cv=4) |
||
| 32 | |||
| 33 | |||
| 34 | optimizer = HillClimbingOptimizer() |
||
| 35 | optimizer.add_search(experiment1, search_config1, n_iter=100) |
||
| 36 | hyper = optimizer |
||
| 37 | hyper.run(max_time=5) |
||
| 38 |