1
|
|
|
import numpy as np |
2
|
|
|
from hyperactive import Hyperactive |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
def objective_function(opt): |
6
|
|
|
score = -(opt["x1"] * opt["x1"] + opt["x2"] * opt["x2"]) |
7
|
|
|
return score |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
search_space = { |
11
|
|
|
"x1": list(np.arange(-1000, 1000, 0.1)), |
12
|
|
|
"x2": list(np.arange(-1000, 1000, 0.1)), |
13
|
|
|
} |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
err = 0.001 |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def test_random_state_n_jobs_0(): |
20
|
|
|
n_jobs = 2 |
21
|
|
|
|
22
|
|
|
hyper = Hyperactive() |
23
|
|
|
hyper.add_search( |
24
|
|
|
objective_function, |
25
|
|
|
search_space, |
26
|
|
|
n_iter=5, |
27
|
|
|
initialize={"random": 1}, |
28
|
|
|
random_state=1, |
29
|
|
|
n_jobs=n_jobs, |
30
|
|
|
) |
31
|
|
|
hyper.run() |
32
|
|
|
|
33
|
|
|
results = hyper.search_data(objective_function) |
34
|
|
|
|
35
|
|
|
no_dup = results.drop_duplicates(subset=list(search_space.keys())) |
36
|
|
|
print("no_dup", no_dup) |
37
|
|
|
print("results", results) |
38
|
|
|
|
39
|
|
|
print(int(len(results) / n_jobs)) |
40
|
|
|
print(len(no_dup)) |
41
|
|
|
|
42
|
|
|
assert int(len(results) / n_jobs) != len(no_dup) |
43
|
|
|
|
44
|
|
|
|
45
|
|
View Code Duplication |
def test_random_state_n_jobs_1(): |
|
|
|
|
46
|
|
|
n_jobs = 3 |
47
|
|
|
|
48
|
|
|
hyper = Hyperactive() |
49
|
|
|
hyper.add_search( |
50
|
|
|
objective_function, |
51
|
|
|
search_space, |
52
|
|
|
n_iter=5, |
53
|
|
|
initialize={"random": 1}, |
54
|
|
|
random_state=1, |
55
|
|
|
n_jobs=n_jobs, |
56
|
|
|
) |
57
|
|
|
hyper.run() |
58
|
|
|
|
59
|
|
|
results = hyper.search_data(objective_function) |
60
|
|
|
|
61
|
|
|
no_dup = results.drop_duplicates(subset=list(search_space.keys())) |
62
|
|
|
print("no_dup", no_dup) |
63
|
|
|
print("results", results) |
64
|
|
|
|
65
|
|
|
assert int(len(results) / n_jobs) != len(no_dup) |
66
|
|
|
|
67
|
|
|
|
68
|
|
View Code Duplication |
def test_random_state_n_jobs_2(): |
|
|
|
|
69
|
|
|
n_jobs = 4 |
70
|
|
|
|
71
|
|
|
hyper = Hyperactive() |
72
|
|
|
hyper.add_search( |
73
|
|
|
objective_function, |
74
|
|
|
search_space, |
75
|
|
|
n_iter=5, |
76
|
|
|
initialize={"random": 1}, |
77
|
|
|
random_state=1, |
78
|
|
|
n_jobs=n_jobs, |
79
|
|
|
) |
80
|
|
|
hyper.run() |
81
|
|
|
|
82
|
|
|
results = hyper.search_data(objective_function) |
83
|
|
|
|
84
|
|
|
no_dup = results.drop_duplicates(subset=list(search_space.keys())) |
85
|
|
|
print("no_dup", no_dup) |
86
|
|
|
print("results", results) |
87
|
|
|
|
88
|
|
|
assert int(len(results) / n_jobs) != len(no_dup) |
89
|
|
|
|
90
|
|
|
|
91
|
|
View Code Duplication |
def test_random_state_0(): |
|
|
|
|
92
|
|
|
hyper0 = Hyperactive() |
93
|
|
|
hyper0.add_search( |
94
|
|
|
objective_function, |
95
|
|
|
search_space, |
96
|
|
|
n_iter=10, |
97
|
|
|
initialize={"random": 1}, |
98
|
|
|
random_state=1, |
99
|
|
|
) |
100
|
|
|
hyper0.run() |
101
|
|
|
|
102
|
|
|
hyper1 = Hyperactive() |
103
|
|
|
hyper1.add_search( |
104
|
|
|
objective_function, |
105
|
|
|
search_space, |
106
|
|
|
n_iter=10, |
107
|
|
|
initialize={"random": 1}, |
108
|
|
|
random_state=1, |
109
|
|
|
) |
110
|
|
|
hyper1.run() |
111
|
|
|
|
112
|
|
|
best_score0 = hyper0.best_score(objective_function) |
113
|
|
|
best_score1 = hyper1.best_score(objective_function) |
114
|
|
|
|
115
|
|
|
assert abs(best_score0 - best_score1) < err |
116
|
|
|
|
117
|
|
|
|
118
|
|
View Code Duplication |
def test_random_state_1(): |
|
|
|
|
119
|
|
|
hyper0 = Hyperactive() |
120
|
|
|
hyper0.add_search( |
121
|
|
|
objective_function, |
122
|
|
|
search_space, |
123
|
|
|
n_iter=10, |
124
|
|
|
initialize={"random": 1}, |
125
|
|
|
random_state=10, |
126
|
|
|
) |
127
|
|
|
hyper0.run() |
128
|
|
|
|
129
|
|
|
hyper1 = Hyperactive() |
130
|
|
|
hyper1.add_search( |
131
|
|
|
objective_function, |
132
|
|
|
search_space, |
133
|
|
|
n_iter=10, |
134
|
|
|
initialize={"random": 1}, |
135
|
|
|
random_state=10, |
136
|
|
|
) |
137
|
|
|
hyper1.run() |
138
|
|
|
|
139
|
|
|
best_score0 = hyper0.best_score(objective_function) |
140
|
|
|
best_score1 = hyper1.best_score(objective_function) |
141
|
|
|
|
142
|
|
|
assert abs(best_score0 - best_score1) < err |
143
|
|
|
|
144
|
|
|
|
145
|
|
View Code Duplication |
def test_random_state_2(): |
|
|
|
|
146
|
|
|
hyper0 = Hyperactive() |
147
|
|
|
hyper0.add_search( |
148
|
|
|
objective_function, |
149
|
|
|
search_space, |
150
|
|
|
n_iter=10, |
151
|
|
|
initialize={"random": 1}, |
152
|
|
|
random_state=1, |
153
|
|
|
) |
154
|
|
|
hyper0.run() |
155
|
|
|
|
156
|
|
|
hyper1 = Hyperactive() |
157
|
|
|
hyper1.add_search( |
158
|
|
|
objective_function, |
159
|
|
|
search_space, |
160
|
|
|
n_iter=10, |
161
|
|
|
initialize={"random": 1}, |
162
|
|
|
random_state=10, |
163
|
|
|
) |
164
|
|
|
hyper1.run() |
165
|
|
|
|
166
|
|
|
best_score0 = hyper0.best_score(objective_function) |
167
|
|
|
best_score1 = hyper1.best_score(objective_function) |
168
|
|
|
|
169
|
|
|
assert abs(best_score0 - best_score1) > err |
170
|
|
|
|
171
|
|
|
|
172
|
|
|
def test_no_random_state_0(): |
173
|
|
|
hyper0 = Hyperactive() |
174
|
|
|
hyper0.add_search( |
175
|
|
|
objective_function, |
176
|
|
|
search_space, |
177
|
|
|
n_iter=10, |
178
|
|
|
initialize={"random": 1}, |
179
|
|
|
) |
180
|
|
|
hyper0.run() |
181
|
|
|
|
182
|
|
|
hyper1 = Hyperactive() |
183
|
|
|
hyper1.add_search( |
184
|
|
|
objective_function, |
185
|
|
|
search_space, |
186
|
|
|
n_iter=10, |
187
|
|
|
initialize={"random": 1}, |
188
|
|
|
) |
189
|
|
|
hyper1.run() |
190
|
|
|
|
191
|
|
|
best_score0 = hyper0.best_score(objective_function) |
192
|
|
|
best_score1 = hyper1.best_score(objective_function) |
193
|
|
|
|
194
|
|
|
assert abs(best_score0 - best_score1) > err |
195
|
|
|
|