1
|
|
|
"""Test module for best results optimizer functionality.""" |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
import pytest |
5
|
|
|
|
6
|
|
|
from hyperactive import Hyperactive |
7
|
|
|
|
8
|
|
|
from ._parametrize import optimizers |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def objective_function(opt): |
12
|
|
|
"""Return standard quadratic objective function.""" |
13
|
|
|
score = -opt["x1"] * opt["x1"] |
14
|
|
|
return score |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def objective_function_m5(opt): |
18
|
|
|
"""Quadratic objective function shifted by -5.""" |
19
|
|
|
score = -(opt["x1"] - 5) * (opt["x1"] - 5) |
20
|
|
|
return score |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def objective_function_p5(opt): |
24
|
|
|
"""Quadratic objective function shifted by +5.""" |
25
|
|
|
score = -(opt["x1"] + 5) * (opt["x1"] + 5) |
26
|
|
|
return score |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
search_space_0 = {"x1": list(np.arange(-100, 101, 1))} |
30
|
|
|
search_space_1 = {"x1": list(np.arange(0, 101, 1))} |
31
|
|
|
search_space_2 = {"x1": list(np.arange(-100, 1, 1))} |
32
|
|
|
|
33
|
|
|
search_space_3 = {"x1": list(np.arange(-10, 11, 0.1))} |
34
|
|
|
search_space_4 = {"x1": list(np.arange(0, 11, 0.1))} |
35
|
|
|
search_space_5 = {"x1": list(np.arange(-10, 1, 0.1))} |
36
|
|
|
|
37
|
|
|
search_space_6 = {"x1": list(np.arange(-0.0000000003, 0.0000000003, 0.0000000001))} |
38
|
|
|
search_space_7 = {"x1": list(np.arange(0, 0.0000000003, 0.0000000001))} |
39
|
|
|
search_space_8 = {"x1": list(np.arange(-0.0000000003, 0, 0.0000000001))} |
40
|
|
|
|
41
|
|
|
objective_para = ( |
42
|
|
|
"objective", |
43
|
|
|
[ |
44
|
|
|
(objective_function), |
45
|
|
|
(objective_function_m5), |
46
|
|
|
(objective_function_p5), |
47
|
|
|
], |
48
|
|
|
) |
49
|
|
|
|
50
|
|
|
search_space_para = ( |
51
|
|
|
"search_space", |
52
|
|
|
[ |
53
|
|
|
(search_space_0), |
54
|
|
|
(search_space_1), |
55
|
|
|
(search_space_2), |
56
|
|
|
(search_space_3), |
57
|
|
|
(search_space_4), |
58
|
|
|
(search_space_5), |
59
|
|
|
(search_space_6), |
60
|
|
|
(search_space_7), |
61
|
|
|
(search_space_8), |
62
|
|
|
], |
63
|
|
|
) |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
@pytest.mark.parametrize(*objective_para) |
67
|
|
|
@pytest.mark.parametrize(*search_space_para) |
68
|
|
|
@pytest.mark.parametrize(*optimizers) |
69
|
|
|
def test_best_results_0(Optimizer, search_space, objective): |
70
|
|
|
"""Test best score consistency with best parameters.""" |
71
|
|
|
search_space = search_space |
72
|
|
|
objective_function = objective |
73
|
|
|
|
74
|
|
|
initialize = {"vertices": 2} |
75
|
|
|
|
76
|
|
|
hyper = Hyperactive() |
77
|
|
|
hyper.add_search( |
78
|
|
|
objective_function, |
79
|
|
|
search_space, |
80
|
|
|
optimizer=Optimizer(), |
81
|
|
|
n_iter=10, |
82
|
|
|
memory=False, |
83
|
|
|
initialize=initialize, |
84
|
|
|
) |
85
|
|
|
hyper.run() |
86
|
|
|
|
87
|
|
|
assert hyper.best_score(objective_function) == objective_function( |
88
|
|
|
hyper.best_para(objective_function) |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
@pytest.mark.parametrize(*objective_para) |
93
|
|
|
@pytest.mark.parametrize(*search_space_para) |
94
|
|
|
@pytest.mark.parametrize(*optimizers) |
95
|
|
|
def test_best_results_1(Optimizer, search_space, objective): |
96
|
|
|
"""Test best parameters are present in search data.""" |
97
|
|
|
search_space = search_space |
98
|
|
|
objective_function = objective |
99
|
|
|
|
100
|
|
|
initialize = {"vertices": 2} |
101
|
|
|
|
102
|
|
|
hyper = Hyperactive() |
103
|
|
|
hyper.add_search( |
104
|
|
|
objective_function, |
105
|
|
|
search_space, |
106
|
|
|
optimizer=Optimizer(), |
107
|
|
|
n_iter=10, |
108
|
|
|
memory=False, |
109
|
|
|
initialize=initialize, |
110
|
|
|
) |
111
|
|
|
hyper.run() |
112
|
|
|
|
113
|
|
|
assert hyper.best_para(objective_function)["x1"] in list( |
114
|
|
|
hyper.search_data(objective_function)["x1"] |
115
|
|
|
) |
116
|
|
|
|