1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
|
8
|
|
|
class DictClass: |
9
|
|
|
def __init__(self, search_space): |
10
|
|
|
self.search_space = search_space |
11
|
|
|
|
12
|
|
|
def __getitem__(self, key): |
13
|
|
|
return self.search_space[key] |
14
|
|
|
|
15
|
|
|
def keys(self): |
16
|
|
|
return self.search_space.keys() |
17
|
|
|
|
18
|
|
|
def values(self): |
19
|
|
|
return self.search_space.values() |
20
|
|
|
|
21
|
|
|
def items(self): |
22
|
|
|
return self.search_space.items() |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
class SearchSpace(DictClass): |
26
|
|
|
def __init__(self, search_space): |
27
|
|
|
super().__init__(search_space) |
28
|
|
|
self.search_space = search_space |
29
|
|
|
|
30
|
|
|
self.dim_keys = list(search_space.keys()) |
31
|
|
|
self.values_l = list(self.search_space.values()) |
32
|
|
|
|
33
|
|
|
positions = {} |
34
|
|
|
for key in search_space.keys(): |
35
|
|
|
positions[key] = np.array(range(len(search_space[key]))) |
36
|
|
|
self.positions = positions |
37
|
|
|
|
38
|
|
|
self.check_list() |
39
|
|
|
self.check_non_num_values() |
40
|
|
|
|
41
|
|
|
self.data_types = self.dim_types() |
42
|
|
|
self.func2str = self._create_num_str_ss() |
43
|
|
|
|
44
|
|
|
def __call__(self): |
45
|
|
|
return self.search_space |
46
|
|
|
|
47
|
|
|
def dim_types(self): |
48
|
|
|
data_types = {} |
49
|
|
|
for dim_key in self.dim_keys: |
50
|
|
|
dim_values = np.array(list(self.search_space[dim_key])) |
51
|
|
|
try: |
52
|
|
|
np.subtract(dim_values, dim_values) |
53
|
|
|
np.array(dim_values).searchsorted(dim_values) |
54
|
|
|
except: |
55
|
|
|
_type_ = "object" |
56
|
|
|
else: |
57
|
|
|
_type_ = "number" |
58
|
|
|
|
59
|
|
|
data_types[dim_key] = _type_ |
60
|
|
|
return data_types |
61
|
|
|
|
62
|
|
|
def _create_num_str_ss(self): |
63
|
|
|
func2str = {} |
64
|
|
|
for dim_key in self.dim_keys: |
65
|
|
|
if self.data_types[dim_key] == "number": |
66
|
|
|
func2str[dim_key] = self.search_space[dim_key] |
67
|
|
|
else: |
68
|
|
|
func2str[dim_key] = [] |
69
|
|
|
|
70
|
|
|
dim_values = self.search_space[dim_key] |
71
|
|
|
for value in dim_values: |
72
|
|
|
try: |
73
|
|
|
func_name = value.__name__ |
74
|
|
|
except: |
75
|
|
|
func_name = value |
76
|
|
|
|
77
|
|
|
func2str[dim_key].append(func_name) |
78
|
|
|
return func2str |
79
|
|
|
|
80
|
|
|
def check_list(self): |
81
|
|
|
for dim_key in self.dim_keys: |
82
|
|
|
search_dim = self.search_space[dim_key] |
83
|
|
|
|
84
|
|
|
err_msg = "\n Value in '{}' of search space dictionary must be of type list \n".format( |
85
|
|
|
dim_key |
86
|
|
|
) |
87
|
|
|
if not isinstance(search_dim, list): |
88
|
|
|
raise ValueError(err_msg) |
89
|
|
|
|
90
|
|
|
@staticmethod |
91
|
|
|
def is_function(value): |
92
|
|
|
try: |
93
|
|
|
value.__name__ |
94
|
|
|
except: |
95
|
|
|
return False |
96
|
|
|
else: |
97
|
|
|
return True |
98
|
|
|
|
99
|
|
|
@staticmethod |
100
|
|
|
def is_number(value): |
101
|
|
|
try: |
102
|
|
|
float(value) |
103
|
|
|
value * 0.1 |
104
|
|
|
value - 0.1 |
105
|
|
|
value / 0.1 |
106
|
|
|
except: |
107
|
|
|
return False |
108
|
|
|
else: |
109
|
|
|
return True |
110
|
|
|
|
111
|
|
|
def _string_or_object(self, dim_key, dim_values): |
112
|
|
|
for dim_value in dim_values: |
113
|
|
|
is_str = isinstance(dim_value, str) |
114
|
|
|
is_func = self.is_function(dim_value) |
115
|
|
|
is_number = self.is_number(dim_value) |
116
|
|
|
|
117
|
|
|
if not is_str and not is_func and not is_number: |
118
|
|
|
msg = "\n The value '{}' of type '{}' in the search space dimension '{}' must be number, string or function \n".format( |
119
|
|
|
dim_value, type(dim_value), dim_key |
120
|
|
|
) |
121
|
|
|
raise ValueError(msg) |
122
|
|
|
|
123
|
|
|
def check_non_num_values(self): |
124
|
|
|
for dim_key in self.dim_keys: |
125
|
|
|
dim_values = np.array(list(self.search_space[dim_key])) |
126
|
|
|
|
127
|
|
|
try: |
128
|
|
|
np.subtract(dim_values, dim_values) |
129
|
|
|
np.array(dim_values).searchsorted(dim_values) |
130
|
|
|
except: |
131
|
|
|
self._string_or_object(dim_key, dim_values) |
132
|
|
|
else: |
133
|
|
|
if dim_values.ndim != 1: |
134
|
|
|
msg = "Array-like object in '{}' must be one dimensional".format( |
135
|
|
|
dim_key |
136
|
|
|
) |
137
|
|
|
raise ValueError(msg) |
138
|
|
|
|