|
1
|
|
|
"""Grid search optimizer.""" |
|
2
|
|
|
|
|
3
|
|
|
# copyright: hyperactive developers, MIT License (see LICENSE file) |
|
4
|
|
|
|
|
5
|
|
|
from collections.abc import Sequence |
|
6
|
|
|
|
|
7
|
|
|
import numpy as np |
|
8
|
|
|
from sklearn.model_selection import ParameterSampler |
|
9
|
|
|
|
|
10
|
|
|
from hyperactive.base import BaseOptimizer |
|
11
|
|
|
from hyperactive.opt._common import _score_params |
|
12
|
|
|
from hyperactive.utils.parallel import parallelize |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
class RandomSearchSk(BaseOptimizer): |
|
16
|
|
|
"""Random search optimizer leveraging sklearn's ``ParameterSampler``. |
|
17
|
|
|
|
|
18
|
|
|
Parameters |
|
19
|
|
|
---------- |
|
20
|
|
|
param_distributions : dict[str, list | scipy.stats.rv_frozen] |
|
21
|
|
|
Search space specification. Discrete lists are sampled uniformly; |
|
22
|
|
|
scipy distribution objects are sampled via their ``rvs`` method. |
|
23
|
|
|
|
|
24
|
|
|
n_iter : int, default=10 |
|
25
|
|
|
Number of parameter sets to evaluate. |
|
26
|
|
|
|
|
27
|
|
|
random_state : int | np.random.RandomState | None, default=None |
|
28
|
|
|
Controls the pseudo-random generator for reproducibility. |
|
29
|
|
|
|
|
30
|
|
|
error_score : float, default=np.nan |
|
31
|
|
|
Score assigned when the experiment raises an exception. |
|
32
|
|
|
|
|
33
|
|
|
backend : {"dask", "loky", "multiprocessing", "threading", "ray"}, default = "None". |
|
34
|
|
|
Parallelization backend to use in the search process. |
|
35
|
|
|
|
|
36
|
|
|
- "None": executes loop sequentally, simple list comprehension |
|
37
|
|
|
- "loky", "multiprocessing" and "threading": uses ``joblib.Parallel`` loops |
|
38
|
|
|
- "joblib": custom and 3rd party ``joblib`` backends, e.g., ``spark`` |
|
39
|
|
|
- "dask": uses ``dask``, requires ``dask`` package in environment |
|
40
|
|
|
- "ray": uses ``ray``, requires ``ray`` package in environment |
|
41
|
|
|
|
|
42
|
|
|
backend_params : dict, optional |
|
43
|
|
|
additional parameters passed to the backend as config. |
|
44
|
|
|
Directly passed to ``utils.parallel.parallelize``. |
|
45
|
|
|
Valid keys depend on the value of ``backend``: |
|
46
|
|
|
|
|
47
|
|
|
- "None": no additional parameters, ``backend_params`` is ignored |
|
48
|
|
|
- "loky", "multiprocessing" and "threading": default ``joblib`` backends |
|
49
|
|
|
any valid keys for ``joblib.Parallel`` can be passed here, e.g., ``n_jobs``, |
|
50
|
|
|
with the exception of ``backend`` which is directly controlled by ``backend``. |
|
51
|
|
|
If ``n_jobs`` is not passed, it will default to ``-1``, other parameters |
|
52
|
|
|
will default to ``joblib`` defaults. |
|
53
|
|
|
- "joblib": custom and 3rd party ``joblib`` backends, e.g., ``spark``. |
|
54
|
|
|
any valid keys for ``joblib.Parallel`` can be passed here, e.g., ``n_jobs``, |
|
55
|
|
|
``backend`` must be passed as a key of ``backend_params`` in this case. |
|
56
|
|
|
If ``n_jobs`` is not passed, it will default to ``-1``, other parameters |
|
57
|
|
|
will default to ``joblib`` defaults. |
|
58
|
|
|
- "dask": any valid keys for ``dask.compute`` can be passed, e.g., ``scheduler`` |
|
59
|
|
|
|
|
60
|
|
|
- "ray": The following keys can be passed: |
|
61
|
|
|
|
|
62
|
|
|
- "ray_remote_args": dictionary of valid keys for ``ray.init`` |
|
63
|
|
|
- "shutdown_ray": bool, default=True; False prevents ``ray`` from shutting |
|
64
|
|
|
down after parallelization. |
|
65
|
|
|
- "logger_name": str, default="ray"; name of the logger to use. |
|
66
|
|
|
- "mute_warnings": bool, default=False; if True, suppresses warnings |
|
67
|
|
|
|
|
68
|
|
|
experiment : BaseExperiment, optional |
|
69
|
|
|
Callable returning a scalar score when invoked with keyword |
|
70
|
|
|
arguments matching a parameter set. |
|
71
|
|
|
|
|
72
|
|
|
Example |
|
73
|
|
|
------- |
|
74
|
|
|
Random search with different backend configurations: |
|
75
|
|
|
|
|
76
|
|
|
>>> from hyperactive.opt import RandomSearchSk |
|
77
|
|
|
>>> from scipy.stats import uniform |
|
78
|
|
|
>>> param_distributions = { |
|
79
|
|
|
... "C": uniform(loc=0.1, scale=10), |
|
80
|
|
|
... "gamma": ["scale", "auto", 0.001, 0.01, 0.1, 1], |
|
81
|
|
|
... } |
|
82
|
|
|
>>> |
|
83
|
|
|
>>> # Sequential execution |
|
84
|
|
|
>>> random_search = RandomSearchSk( |
|
85
|
|
|
... param_distributions=param_distributions, |
|
86
|
|
|
... n_iter=20, |
|
87
|
|
|
... backend="None", |
|
88
|
|
|
... ) |
|
89
|
|
|
>>> |
|
90
|
|
|
>>> # Parallel execution with threading backend |
|
91
|
|
|
>>> random_search_parallel = RandomSearchSk( |
|
92
|
|
|
... param_distributions=param_distributions, |
|
93
|
|
|
... n_iter=20, |
|
94
|
|
|
... backend="threading", |
|
95
|
|
|
... backend_params={"n_jobs": 2}, |
|
96
|
|
|
... ) |
|
97
|
|
|
|
|
98
|
|
|
Attributes |
|
99
|
|
|
---------- |
|
100
|
|
|
best_params_ : dict[str, Any] |
|
101
|
|
|
Hyper-parameter configuration with the best (lowest) score. |
|
102
|
|
|
best_score_ : float |
|
103
|
|
|
Score achieved by ``best_params_``. |
|
104
|
|
|
best_index_ : int |
|
105
|
|
|
Index of ``best_params_`` in the sampled sequence. |
|
106
|
|
|
""" |
|
107
|
|
|
|
|
108
|
|
|
def __init__( |
|
109
|
|
|
self, |
|
110
|
|
|
param_distributions=None, |
|
111
|
|
|
n_iter=10, |
|
112
|
|
|
random_state=None, |
|
113
|
|
|
error_score=np.nan, |
|
114
|
|
|
backend="None", |
|
115
|
|
|
backend_params=None, |
|
116
|
|
|
experiment=None, |
|
117
|
|
|
): |
|
118
|
|
|
self.experiment = experiment |
|
119
|
|
|
self.param_distributions = param_distributions |
|
120
|
|
|
self.n_iter = n_iter |
|
121
|
|
|
self.random_state = random_state |
|
122
|
|
|
self.error_score = error_score |
|
123
|
|
|
self.backend = backend |
|
124
|
|
|
self.backend_params = backend_params |
|
125
|
|
|
|
|
126
|
|
|
super().__init__() |
|
127
|
|
|
|
|
128
|
|
|
@staticmethod |
|
129
|
|
|
def _is_distribution(obj) -> bool: |
|
130
|
|
|
"""Return True if *obj* looks like a scipy frozen distribution.""" |
|
131
|
|
|
return callable(getattr(obj, "rvs", None)) |
|
132
|
|
|
|
|
133
|
|
|
def _check_param_distributions(self, param_distributions): |
|
134
|
|
|
"""Validate ``param_distributions`` similar to sklearn ≤1.0.x.""" |
|
135
|
|
|
if hasattr(param_distributions, "items"): |
|
136
|
|
|
param_distributions = [param_distributions] |
|
137
|
|
|
|
|
138
|
|
|
for p in param_distributions: |
|
139
|
|
|
for name, v in p.items(): |
|
140
|
|
|
if self._is_distribution(v): |
|
141
|
|
|
# Assume scipy frozen distribution: nothing to check |
|
142
|
|
|
continue |
|
143
|
|
|
|
|
144
|
|
|
if isinstance(v, np.ndarray) and v.ndim > 1: |
|
145
|
|
|
raise ValueError("Parameter array should be one-dimensional.") |
|
146
|
|
|
|
|
147
|
|
|
if isinstance(v, str) or not isinstance(v, (np.ndarray, Sequence)): |
|
148
|
|
|
raise ValueError( |
|
149
|
|
|
f"Parameter distribution for ({name}) must be a list, numpy " |
|
150
|
|
|
f"array, or scipy.stats ``rv_frozen``, but got ({type(v)})." |
|
151
|
|
|
" Single values need to be wrapped in a sequence." |
|
152
|
|
|
) |
|
153
|
|
|
|
|
154
|
|
|
if len(v) == 0: |
|
155
|
|
|
raise ValueError( |
|
156
|
|
|
f"Parameter values for ({name}) need to be a " |
|
157
|
|
|
"non-empty sequence." |
|
158
|
|
|
) |
|
159
|
|
|
|
|
160
|
|
|
def _solve( |
|
161
|
|
|
self, |
|
162
|
|
|
experiment, |
|
163
|
|
|
param_distributions, |
|
164
|
|
|
n_iter, |
|
165
|
|
|
random_state, |
|
166
|
|
|
error_score, |
|
167
|
|
|
backend, |
|
168
|
|
|
backend_params, |
|
169
|
|
|
): |
|
170
|
|
|
"""Sample ``n_iter`` points and return the best parameter set.""" |
|
171
|
|
|
self._check_param_distributions(param_distributions) |
|
172
|
|
|
|
|
173
|
|
|
sampler = ParameterSampler( |
|
174
|
|
|
param_distributions=param_distributions, |
|
175
|
|
|
n_iter=n_iter, |
|
176
|
|
|
random_state=random_state, |
|
177
|
|
|
) |
|
178
|
|
|
candidate_params = list(sampler) |
|
179
|
|
|
|
|
180
|
|
|
meta = { |
|
181
|
|
|
"experiment": experiment, |
|
182
|
|
|
"error_score": error_score, |
|
183
|
|
|
} |
|
184
|
|
|
|
|
185
|
|
|
scores = parallelize( |
|
186
|
|
|
fun=_score_params, |
|
187
|
|
|
iter=candidate_params, |
|
188
|
|
|
meta=meta, |
|
189
|
|
|
backend=backend, |
|
190
|
|
|
backend_params=backend_params, |
|
191
|
|
|
) |
|
192
|
|
|
|
|
193
|
|
|
best_index = int(np.argmin(scores)) # lower-is-better convention |
|
194
|
|
|
best_params = candidate_params[best_index] |
|
195
|
|
|
|
|
196
|
|
|
# public attributes for external consumers |
|
197
|
|
|
self.best_index_ = best_index |
|
198
|
|
|
self.best_score_ = float(scores[best_index]) |
|
199
|
|
|
self.best_params_ = best_params |
|
200
|
|
|
|
|
201
|
|
|
return best_params |
|
202
|
|
|
|
|
203
|
|
|
@classmethod |
|
204
|
|
|
def get_test_params(cls, parameter_set: str = "default"): |
|
205
|
|
|
"""Provide deterministic benchmark configurations for unit tests.""" |
|
206
|
|
|
from hyperactive.experiment.bench import Ackley |
|
207
|
|
|
from hyperactive.experiment.integrations import SklearnCvExperiment |
|
208
|
|
|
|
|
209
|
|
|
# 1) ML example (Iris + SVC) |
|
210
|
|
|
sklearn_exp = SklearnCvExperiment.create_test_instance() |
|
211
|
|
|
param_dist_1 = { |
|
212
|
|
|
"C": [0.01, 0.1, 1, 10], |
|
213
|
|
|
"gamma": np.logspace(-4, 1, 6), |
|
214
|
|
|
} |
|
215
|
|
|
params_sklearn = { |
|
216
|
|
|
"experiment": sklearn_exp, |
|
217
|
|
|
"param_distributions": param_dist_1, |
|
218
|
|
|
"n_iter": 5, |
|
219
|
|
|
"random_state": 42, |
|
220
|
|
|
} |
|
221
|
|
|
|
|
222
|
|
|
# 2) continuous optimisation example (Ackley) |
|
223
|
|
|
ackley_exp = Ackley.create_test_instance() |
|
224
|
|
|
param_dist_2 = { |
|
225
|
|
|
"x0": np.linspace(-5, 5, 50), |
|
226
|
|
|
"x1": np.linspace(-5, 5, 50), |
|
227
|
|
|
} |
|
228
|
|
|
params_ackley = { |
|
229
|
|
|
"experiment": ackley_exp, |
|
230
|
|
|
"param_distributions": param_dist_2, |
|
231
|
|
|
"n_iter": 20, |
|
232
|
|
|
"random_state": 0, |
|
233
|
|
|
} |
|
234
|
|
|
|
|
235
|
|
|
params = [params_sklearn, params_ackley] |
|
236
|
|
|
|
|
237
|
|
|
from hyperactive.utils.parallel import _get_parallel_test_fixtures |
|
238
|
|
|
|
|
239
|
|
|
parallel_fixtures = _get_parallel_test_fixtures() |
|
240
|
|
|
|
|
241
|
|
|
for x in parallel_fixtures: |
|
242
|
|
|
new_ackley = params_ackley.copy() |
|
243
|
|
|
new_ackley.update(x) |
|
244
|
|
|
params.append(new_ackley) |
|
245
|
|
|
|
|
246
|
|
|
return params |
|
247
|
|
|
|