Ackley._get_score_params()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 16
Code Lines 6

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 6
dl 0
loc 16
rs 10
c 0
b 0
f 0
cc 1
nop 1
1
"""Ackley function, common benchmark for optimization algorithms."""
2
# copyright: hyperactive developers, MIT License (see LICENSE file)
3
4
import numpy as np
5
6
from hyperactive.base import BaseExperiment
7
8
9
class Ackley(BaseExperiment):
10
    r"""Ackley function, common benchmark for optimization algorithms.
11
12
    The Ackley function is a non-convex function used to test optimization algorithms.
13
    It is defined as:
14
15
    .. math::
16
        f(x) = -a \cdot \exp(-\frac{b}{\sqrt{d}\left\|x\right\|}) - \exp(\frac{1}{d} \sum_{i=1}^d\cos (c x_i) ) + a + \exp(1)
17
18
    where :math:`a` (= `a`), :math:`b` (= `b`), and :math:`c` (= `c`) are constants,
19
    :math:`d` (= `d`) is the number of dimensions of the real input vector :math:`x`,
20
    and :math:`\left\|x\right\|` is the Euclidean norm of the vector :math:`x`.
21
22
    The components of the function argument :math:`x`
23
    are the input variables of the `score` method,
24
    and are set as `x0`, `x1`, ..., `x[d]` respectively.
25
26
    Parameters
27
    ----------
28
    a : float, optional, default=20
29
        Amplitude constant used in the calculation of the Ackley function.
30
    b : float, optional, default=0.2
31
        Decay constant used in the calculation of the Ackley function.
32
    c : float, optional, default=2*pi
33
        Frequency constant used in the calculation of the Ackley function.
34
    d : int, optional, default=2
35
        Number of dimensions for the Ackley function. The default is 2.
36
37
    Example
38
    -------
39
    >>> from hyperactive.experiment.toy import Ackley
40
    >>> ackley = Ackley(a=20)
41
    >>> params = {"x0": 1, "x1": 2}
42
    >>> score, add_info = ackley.score(params)
43
44
    Quick call without metadata return or dictionary:
45
    >>> score = ackley(x0=1, x1=2)
46
    """  # noqa: E501
47
48
    _tags = {
49
        "property:randomness": "deterministic",  # random or deterministic
50
        # if deterministic, two calls of score will result in the same value
51
        # random = two calls may result in different values; same as "stochastic"
52
    }
53
54
    def __init__(self, a=20, b=0.2, c=2 * np.pi, d=2):
55
        self.a = a
56
        self.b = b
57
        self.c = c
58
        self.d = d
59
        super().__init__()
60
61
    def _paramnames(self):
62
        return [f"x{i}" for i in range(self.d)]
63
64
    def _score(self, params):
65
        x_vec = np.array([params[f"x{i}"] for i in range(self.d)])
66
67
        loss1 = -self.a * np.exp(-self.b * np.sqrt(np.sum(x_vec**2) / self.d))
68
        loss2 = -np.exp(np.sum(np.cos(self.c * x_vec)) / self.d)
69
        loss3 = np.exp(1)
70
        loss4 = self.a
71
72
        loss = loss1 + loss2 + loss3 + loss4
73
74
        return loss, {}
75
76
    @classmethod
77
    def get_test_params(cls, parameter_set="default"):
78
        """Return testing parameter settings for the skbase object.
79
80
        ``get_test_params`` is a unified interface point to store
81
        parameter settings for testing purposes. This function is also
82
        used in ``create_test_instance`` and ``create_test_instances_and_names``
83
        to construct test instances.
84
85
        ``get_test_params`` should return a single ``dict``, or a ``list`` of ``dict``.
86
87
        Each ``dict`` is a parameter configuration for testing,
88
        and can be used to construct an "interesting" test instance.
89
        A call to ``cls(**params)`` should
90
        be valid for all dictionaries ``params`` in the return of ``get_test_params``.
91
92
        The ``get_test_params`` need not return fixed lists of dictionaries,
93
        it can also return dynamic or stochastic parameter settings.
94
95
        Parameters
96
        ----------
97
        parameter_set : str, default="default"
98
            Name of the set of test parameters to return, for use in tests. If no
99
            special parameters are defined for a value, will return `"default"` set.
100
101
        Returns
102
        -------
103
        params : dict or list of dict, default = {}
104
            Parameters to create testing instances of the class
105
            Each dict are parameters to construct an "interesting" test instance, i.e.,
106
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
107
            `create_test_instance` uses the first (or only) dictionary in `params`
108
        """
109
        return [{"a": 0}, {"a": 20, "d": 42}, {"a": -42, "b": 0.5, "c": 1, "d": 10}]
110
111
    @classmethod
112
    def _get_score_params(self):
113
        """Return settings for testing the score function. Used in tests only.
114
115
        Returns a list, the i-th element corresponds to self.get_test_params()[i].
116
        It should be a valid call for self.score.
117
118
        Returns
119
        -------
120
        list of dict
121
            The parameters to be used for scoring.
122
        """
123
        params0 = {"x0": 0, "x1": 0}
124
        params1 = {f"x{i}": i + 3 for i in range(42)}
125
        params2 = {f"x{i}": i**2 for i in range(10)}
126
        return [params0, params1, params2]
127