|
1
|
|
|
"""Base class for optimizer.""" |
|
2
|
|
|
|
|
3
|
|
|
# copyright: hyperactive developers, MIT License (see LICENSE file) |
|
4
|
|
|
|
|
5
|
|
|
from skbase.base import BaseObject |
|
6
|
|
|
|
|
7
|
|
|
|
|
8
|
|
|
class BaseOptimizer(BaseObject): |
|
9
|
|
|
"""Base class for optimizer.""" |
|
10
|
|
|
|
|
11
|
|
|
_tags = { |
|
12
|
|
|
"object_type": "optimizer", |
|
13
|
|
|
"python_dependencies": None, |
|
14
|
|
|
# properties of the optimizer |
|
15
|
|
|
"info:name": None, # str |
|
16
|
|
|
"info:local_vs_global": "mixed", # "local", "mixed", "global" |
|
17
|
|
|
"info:explore_vs_exploit": "mixed", # "explore", "exploit", "mixed" |
|
18
|
|
|
"info:compute": "middle", # "low", "middle", "high" |
|
19
|
|
|
# see here for explanation of the tags: |
|
20
|
|
|
# https://simonblanke.github.io/gradient-free-optimizers-documentation/1.5/optimizers/ # noqa: E501 |
|
21
|
|
|
} |
|
22
|
|
|
|
|
23
|
|
|
def __init__(self): |
|
24
|
|
|
super().__init__() |
|
25
|
|
|
assert hasattr(self, "experiment"), "Optimizer must have an experiment." |
|
26
|
|
|
search_config = self.get_params() |
|
27
|
|
|
self._experiment = search_config.pop("experiment", None) |
|
28
|
|
|
|
|
29
|
|
|
if self.get_tag("info:name") is None: |
|
30
|
|
|
self.set_tags(**{"info:name": self.__class__.__name__}) |
|
31
|
|
|
|
|
32
|
|
|
def get_search_config(self): |
|
33
|
|
|
"""Get the search configuration. |
|
34
|
|
|
|
|
35
|
|
|
Returns |
|
36
|
|
|
------- |
|
37
|
|
|
dict with str keys |
|
38
|
|
|
The search configuration dictionary. |
|
39
|
|
|
""" |
|
40
|
|
|
search_config = self.get_params(deep=False) |
|
41
|
|
|
search_config.pop("experiment", None) |
|
42
|
|
|
return search_config |
|
43
|
|
|
|
|
44
|
|
|
def get_experiment(self): |
|
45
|
|
|
"""Get the experiment. |
|
46
|
|
|
|
|
47
|
|
|
Returns |
|
48
|
|
|
------- |
|
49
|
|
|
BaseExperiment |
|
50
|
|
|
The experiment to optimize parameters for. |
|
51
|
|
|
""" |
|
52
|
|
|
return self._experiment |
|
53
|
|
|
|
|
54
|
|
|
def solve(self): |
|
55
|
|
|
"""Run the optimization search process to maximize the experiment's score. |
|
56
|
|
|
|
|
57
|
|
|
The optimization searches for a maximizer of the experiment's |
|
58
|
|
|
``score`` method. |
|
59
|
|
|
|
|
60
|
|
|
Depending on the tag ``property:higher_or_lower_is_better`` being |
|
61
|
|
|
set to ``higher`` or ``lower``, the ``run`` method will search for: |
|
62
|
|
|
|
|
63
|
|
|
* the minimizer of the ``evaluate`` method if the tag is ``lower`` |
|
64
|
|
|
* the maximizer of the ``evaluate`` method if the tag is ``higher`` |
|
65
|
|
|
|
|
66
|
|
|
Returns |
|
67
|
|
|
------- |
|
68
|
|
|
best_params : dict |
|
69
|
|
|
The best parameters found during the optimization process. |
|
70
|
|
|
The dict ``best_params`` can be used in ``experiment.score`` or |
|
71
|
|
|
``experiment.evaluate`` directly. |
|
72
|
|
|
""" |
|
73
|
|
|
experiment = self.get_experiment() |
|
74
|
|
|
search_config = self.get_search_config() |
|
75
|
|
|
|
|
76
|
|
|
best_params = self._solve(experiment, **search_config) |
|
77
|
|
|
self.best_params_ = best_params |
|
78
|
|
|
return best_params |
|
79
|
|
|
|