1
|
|
|
""" |
2
|
|
|
This example shows how to select the best features for a model |
3
|
|
|
and dataset. |
4
|
|
|
|
5
|
|
|
The boston dataset has 13 features, therefore we have 13 search space |
6
|
|
|
dimensions for the feature selection. |
7
|
|
|
|
8
|
|
|
The function "get_feature_indices" returns the list of features that |
9
|
|
|
where selected. This can be used to select the subset of features in "x_new". |
10
|
|
|
""" |
11
|
|
|
|
12
|
|
|
import numpy as np |
13
|
|
|
import itertools |
14
|
|
|
from sklearn.datasets import load_diabetes |
15
|
|
|
from sklearn.model_selection import cross_val_score |
16
|
|
|
from sklearn.neighbors import KNeighborsRegressor |
17
|
|
|
from hyperactive import Hyperactive |
18
|
|
|
from hyperactive.optimizers import EvolutionStrategyOptimizer |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
data = load_diabetes() |
22
|
|
|
X, y = data.data, data.target |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
# helper function that returns the selected training data features by index |
26
|
|
|
def get_feature_indices(opt): |
27
|
|
|
feature_indices = [] |
28
|
|
|
for key in opt.keys(): |
29
|
|
|
if "feature" not in key: |
30
|
|
|
continue |
31
|
|
|
if opt[key] == 0: |
32
|
|
|
continue |
33
|
|
|
|
34
|
|
|
nth_feature = int(key.rsplit(".", 1)[1]) |
35
|
|
|
feature_indices.append(nth_feature) |
36
|
|
|
|
37
|
|
|
return feature_indices |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def model(opt): |
41
|
|
|
feature_indices = get_feature_indices(opt) |
42
|
|
|
if len(feature_indices) == 0: |
43
|
|
|
return 0 |
44
|
|
|
|
45
|
|
|
feature_idx_list = [idx for idx in feature_indices if idx is not None] |
46
|
|
|
x_new = X[:, feature_idx_list] |
47
|
|
|
|
48
|
|
|
knr = KNeighborsRegressor(n_neighbors=opt["n_neighbors"]) |
49
|
|
|
scores = cross_val_score(knr, x_new, y, cv=5) |
50
|
|
|
score = scores.mean() |
51
|
|
|
|
52
|
|
|
return score |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
# each feature is used for training (1) or not used for training (0) |
56
|
|
|
search_space = { |
57
|
|
|
"n_neighbors": list(range(1, 100)), |
58
|
|
|
"feature.0": [1, 0], |
59
|
|
|
"feature.1": [1, 0], |
60
|
|
|
"feature.2": [1, 0], |
61
|
|
|
"feature.3": [1, 0], |
62
|
|
|
"feature.4": [1, 0], |
63
|
|
|
"feature.5": [1, 0], |
64
|
|
|
"feature.6": [1, 0], |
65
|
|
|
"feature.7": [1, 0], |
66
|
|
|
"feature.8": [1, 0], |
67
|
|
|
"feature.9": [1, 0], |
68
|
|
|
} |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
optimizer = EvolutionStrategyOptimizer(rand_rest_p=0.20) |
72
|
|
|
|
73
|
|
|
hyper = Hyperactive() |
74
|
|
|
hyper.add_search( |
75
|
|
|
model, |
76
|
|
|
search_space, |
77
|
|
|
n_iter=200, |
78
|
|
|
initialize={"random": 15}, |
79
|
|
|
optimizer=optimizer, |
80
|
|
|
) |
81
|
|
|
hyper.run() |
82
|
|
|
|