bayesian_optimization.model()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 6
Code Lines 5

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 5
nop 1
dl 0
loc 6
rs 10
c 0
b 0
f 0
1
import numpy as np
2
3
4
from sklearn.datasets import load_iris
5
from sklearn.neighbors import KNeighborsClassifier
6
from sklearn.model_selection import cross_val_score
7
8
from hyperactive import Hyperactive
9
from hyperactive.optimizers import BayesianOptimizer
10
11
12
data = load_iris()
13
X, y = data.data, data.target
14
15
16
def model(opt):
17
    knr = KNeighborsClassifier(n_neighbors=opt["n_neighbors"])
18
    scores = cross_val_score(knr, X, y, cv=5)
19
    score = scores.mean()
20
21
    return score
22
23
24
search_space = {
25
    "n_neighbors": list(range(1, 100)),
26
}
27
28
29
hyper = Hyperactive()
30
hyper.add_search(model, search_space, n_iter=100)
31
hyper.run()
32
33
search_data = hyper.search_data(model)
34
35
36
optimizer = BayesianOptimizer(xi=0.03, warm_start_smbo=search_data, rand_rest_p=0.1)
37
38
hyper = Hyperactive()
39
hyper.add_search(model, search_space, optimizer=optimizer, n_iter=100)
40
hyper.run()
41