| Total Complexity | 4 | 
| Total Lines | 39 | 
| Duplicated Lines | 0 % | 
| Changes | 0 | ||
| 1 | # Author: Simon Blanke  | 
            ||
| 2 | # Email: [email protected]  | 
            ||
| 3 | # License: MIT License  | 
            ||
| 4 | |||
| 5 | |||
| 6 | from . import HillClimbingOptimizer  | 
            ||
| 7 | from ...search import Search  | 
            ||
| 8 | |||
| 9 | |||
| 10 | class RepulsingHillClimbingOptimizer(HillClimbingOptimizer, Search):  | 
            ||
| 11 | def __init__(  | 
            ||
| 12 | self,  | 
            ||
| 13 | search_space,  | 
            ||
| 14 | epsilon=0.03,  | 
            ||
| 15 | distribution="normal",  | 
            ||
| 16 | n_neighbours=3,  | 
            ||
| 17 | repulsion_factor=5,  | 
            ||
| 18 | rand_rest_p=0.03,  | 
            ||
| 19 | ):  | 
            ||
| 20 | super().__init__(search_space, epsilon, distribution, n_neighbours)  | 
            ||
| 21 | |||
| 22 | self.tabus = []  | 
            ||
| 23 | self.repulsion_factor = repulsion_factor  | 
            ||
| 24 | self.rand_rest_p = rand_rest_p  | 
            ||
| 25 | self.epsilon_mod = 1  | 
            ||
| 26 | |||
| 27 | @HillClimbingOptimizer.track_nth_iter  | 
            ||
| 28 | @HillClimbingOptimizer.random_restart  | 
            ||
| 29 | def iterate(self):  | 
            ||
| 30 | return self._move_climb(self.pos_current, epsilon_mod=self.epsilon_mod)  | 
            ||
| 31 | |||
| 32 | def evaluate(self, score_new):  | 
            ||
| 33 | super().evaluate(score_new)  | 
            ||
| 34 | |||
| 35 | if score_new <= self.score_current:  | 
            ||
| 36 | self.epsilon_mod = self.repulsion_factor  | 
            ||
| 37 | else:  | 
            ||
| 38 | self.epsilon_mod = 1  | 
            ||
| 39 | |||
| 40 |