Total Complexity | 3 |
Total Lines | 47 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import pytest |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | from gradient_free_optimizers import ( |
||
10 | BayesianOptimizer, |
||
11 | TreeStructuredParzenEstimators, |
||
12 | LipschitzOptimizer, |
||
13 | ForestOptimizer, |
||
14 | ) |
||
15 | |||
16 | |||
17 | def parabola_function(para): |
||
18 | loss = para["x"] * para["x"] + para["y"] * para["y"] |
||
19 | return -loss |
||
20 | |||
21 | |||
22 | search_space = { |
||
23 | "x": np.arange(-1, 1, 1), |
||
24 | "y": np.arange(-1, 1, 1), |
||
25 | } |
||
26 | |||
27 | optimizer_para = ( |
||
28 | "optimizer", |
||
29 | [ |
||
30 | (BayesianOptimizer), |
||
31 | (TreeStructuredParzenEstimators), |
||
32 | (LipschitzOptimizer), |
||
33 | (ForestOptimizer), |
||
34 | ], |
||
35 | ) |
||
36 | |||
37 | |||
38 | @pytest.mark.parametrize(*optimizer_para) |
||
39 | def test_replacement_0(optimizer): |
||
40 | opt = optimizer(search_space, replacement=True) |
||
41 | opt.search(parabola_function, n_iter=15) |
||
42 | |||
43 | opt_false = optimizer(search_space, replacement=False) |
||
44 | with pytest.raises((ValueError, IndexError)): |
||
45 | opt_false.search(parabola_function, n_iter=15) |
||
46 | assert len(opt_false.all_pos_comb) == 0 |
||
47 |