| Total Complexity | 3 |
| Total Lines | 47 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | import pytest |
||
| 6 | import numpy as np |
||
| 7 | |||
| 8 | |||
| 9 | from gradient_free_optimizers import ( |
||
| 10 | BayesianOptimizer, |
||
| 11 | TreeStructuredParzenEstimators, |
||
| 12 | LipschitzOptimizer, |
||
| 13 | ForestOptimizer, |
||
| 14 | ) |
||
| 15 | |||
| 16 | |||
| 17 | def parabola_function(para): |
||
| 18 | loss = para["x"] * para["x"] + para["y"] * para["y"] |
||
| 19 | return -loss |
||
| 20 | |||
| 21 | |||
| 22 | search_space = { |
||
| 23 | "x": np.arange(-1, 1, 1), |
||
| 24 | "y": np.arange(-1, 1, 1), |
||
| 25 | } |
||
| 26 | |||
| 27 | optimizer_para = ( |
||
| 28 | "optimizer", |
||
| 29 | [ |
||
| 30 | (BayesianOptimizer), |
||
| 31 | (TreeStructuredParzenEstimators), |
||
| 32 | (LipschitzOptimizer), |
||
| 33 | (ForestOptimizer), |
||
| 34 | ], |
||
| 35 | ) |
||
| 36 | |||
| 37 | |||
| 38 | @pytest.mark.parametrize(*optimizer_para) |
||
| 39 | def test_replacement_0(optimizer): |
||
| 40 | opt = optimizer(search_space, replacement=True) |
||
| 41 | opt.search(parabola_function, n_iter=15) |
||
| 42 | |||
| 43 | opt_false = optimizer(search_space, replacement=False) |
||
| 44 | with pytest.raises((ValueError, IndexError)): |
||
| 45 | opt_false.search(parabola_function, n_iter=15) |
||
| 46 | assert len(opt_false.all_pos_comb) == 0 |
||
| 47 |