1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import pytest |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from surfaces.test_functions.mathematical import SphereFunction |
9
|
|
|
|
10
|
|
|
from gradient_free_optimizers import SimulatedAnnealingOptimizer |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
sphere_function = SphereFunction(n_dim=2) |
14
|
|
|
objective_function = sphere_function.objective_function |
15
|
|
|
search_space = sphere_function.search_space() |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
n_iter = 1000 |
19
|
|
|
|
20
|
|
|
|
21
|
|
View Code Duplication |
def test_start_temp_0(): |
|
|
|
|
22
|
|
|
n_initialize = 1 |
23
|
|
|
|
24
|
|
|
start_temp_0 = 0 |
25
|
|
|
start_temp_1 = 0.1 |
26
|
|
|
start_temp_10 = 1 |
27
|
|
|
start_temp_100 = 100 |
28
|
|
|
start_temp_inf = np.inf |
29
|
|
|
|
30
|
|
|
epsilon = 1 / np.inf |
31
|
|
|
|
32
|
|
|
opt = SimulatedAnnealingOptimizer( |
33
|
|
|
search_space, |
34
|
|
|
start_temp=start_temp_0, |
35
|
|
|
epsilon=epsilon, |
36
|
|
|
initialize={"random": n_initialize}, |
37
|
|
|
) |
38
|
|
|
opt.search(objective_function, n_iter=n_iter) |
39
|
|
|
n_transitions_0 = opt.n_transitions |
40
|
|
|
|
41
|
|
|
opt = SimulatedAnnealingOptimizer( |
42
|
|
|
search_space, |
43
|
|
|
start_temp=start_temp_1, |
44
|
|
|
epsilon=epsilon, |
45
|
|
|
initialize={"random": n_initialize}, |
46
|
|
|
) |
47
|
|
|
opt.search(objective_function, n_iter=n_iter) |
48
|
|
|
n_transitions_1 = opt.n_transitions |
49
|
|
|
|
50
|
|
|
opt = SimulatedAnnealingOptimizer( |
51
|
|
|
search_space, |
52
|
|
|
start_temp=start_temp_10, |
53
|
|
|
epsilon=epsilon, |
54
|
|
|
initialize={"random": n_initialize}, |
55
|
|
|
) |
56
|
|
|
opt.search(objective_function, n_iter=n_iter) |
57
|
|
|
n_transitions_10 = opt.n_transitions |
58
|
|
|
|
59
|
|
|
opt = SimulatedAnnealingOptimizer( |
60
|
|
|
search_space, |
61
|
|
|
start_temp=start_temp_100, |
62
|
|
|
epsilon=epsilon, |
63
|
|
|
initialize={"random": n_initialize}, |
64
|
|
|
) |
65
|
|
|
opt.search(objective_function, n_iter=n_iter) |
66
|
|
|
n_transitions_100 = opt.n_transitions |
67
|
|
|
|
68
|
|
|
opt = SimulatedAnnealingOptimizer( |
69
|
|
|
search_space, |
70
|
|
|
start_temp=start_temp_inf, |
71
|
|
|
epsilon=epsilon, |
72
|
|
|
initialize={"random": n_initialize}, |
73
|
|
|
) |
74
|
|
|
opt.search(objective_function, n_iter=n_iter) |
75
|
|
|
n_transitions_inf = opt.n_transitions |
76
|
|
|
|
77
|
|
|
print("\n n_transitions_0", n_transitions_0) |
78
|
|
|
print("\n n_transitions_1", n_transitions_1) |
79
|
|
|
print("\n n_transitions_10", n_transitions_10) |
80
|
|
|
print("\n n_transitions_100", n_transitions_100) |
81
|
|
|
print("\n n_transitions_inf", n_transitions_inf) |
82
|
|
|
|
83
|
|
|
assert n_transitions_0 == start_temp_0 |
84
|
|
|
assert ( |
85
|
|
|
n_transitions_1 |
86
|
|
|
== n_transitions_10 |
87
|
|
|
== n_transitions_100 |
88
|
|
|
== n_transitions_inf |
89
|
|
|
== n_iter - n_initialize |
90
|
|
|
) |
91
|
|
|
|
92
|
|
|
|
93
|
|
View Code Duplication |
def test_start_temp_1(): |
|
|
|
|
94
|
|
|
n_initialize = 1 |
95
|
|
|
|
96
|
|
|
start_temp_0 = 0 |
97
|
|
|
start_temp_1 = 0.1 |
98
|
|
|
start_temp_10 = 1 |
99
|
|
|
start_temp_100 = 100 |
100
|
|
|
start_temp_inf = np.inf |
101
|
|
|
|
102
|
|
|
epsilon = 0.03 |
103
|
|
|
|
104
|
|
|
opt = SimulatedAnnealingOptimizer( |
105
|
|
|
search_space, |
106
|
|
|
start_temp=start_temp_0, |
107
|
|
|
epsilon=epsilon, |
108
|
|
|
initialize={"random": n_initialize}, |
109
|
|
|
) |
110
|
|
|
opt.search(objective_function, n_iter=n_iter) |
111
|
|
|
n_transitions_0 = opt.n_transitions |
112
|
|
|
|
113
|
|
|
opt = SimulatedAnnealingOptimizer( |
114
|
|
|
search_space, |
115
|
|
|
start_temp=start_temp_1, |
116
|
|
|
epsilon=epsilon, |
117
|
|
|
initialize={"random": n_initialize}, |
118
|
|
|
) |
119
|
|
|
opt.search(objective_function, n_iter=n_iter) |
120
|
|
|
n_transitions_1 = opt.n_transitions |
121
|
|
|
|
122
|
|
|
opt = SimulatedAnnealingOptimizer( |
123
|
|
|
search_space, |
124
|
|
|
start_temp=start_temp_10, |
125
|
|
|
epsilon=epsilon, |
126
|
|
|
initialize={"random": n_initialize}, |
127
|
|
|
) |
128
|
|
|
opt.search(objective_function, n_iter=n_iter) |
129
|
|
|
n_transitions_10 = opt.n_transitions |
130
|
|
|
|
131
|
|
|
opt = SimulatedAnnealingOptimizer( |
132
|
|
|
search_space, |
133
|
|
|
start_temp=start_temp_100, |
134
|
|
|
epsilon=epsilon, |
135
|
|
|
initialize={"random": n_initialize}, |
136
|
|
|
) |
137
|
|
|
opt.search(objective_function, n_iter=n_iter) |
138
|
|
|
n_transitions_100 = opt.n_transitions |
139
|
|
|
|
140
|
|
|
opt = SimulatedAnnealingOptimizer( |
141
|
|
|
search_space, |
142
|
|
|
start_temp=start_temp_inf, |
143
|
|
|
epsilon=epsilon, |
144
|
|
|
initialize={"random": n_initialize}, |
145
|
|
|
) |
146
|
|
|
opt.search(objective_function, n_iter=n_iter) |
147
|
|
|
n_transitions_inf = opt.n_transitions |
148
|
|
|
|
149
|
|
|
print("\n n_transitions_0", n_transitions_0) |
150
|
|
|
print("\n n_transitions_1", n_transitions_1) |
151
|
|
|
print("\n n_transitions_10", n_transitions_10) |
152
|
|
|
print("\n n_transitions_100", n_transitions_100) |
153
|
|
|
print("\n n_transitions_inf", n_transitions_inf) |
154
|
|
|
|
155
|
|
|
assert n_transitions_0 == start_temp_0 |
156
|
|
|
assert n_transitions_1 < n_transitions_10 < n_transitions_100 < n_transitions_inf |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
def test_annealing_rate_0(): |
160
|
|
|
n_initialize = 1 |
161
|
|
|
|
162
|
|
|
annealing_rate_0 = 0 |
163
|
|
|
annealing_rate_1 = 0.1 |
164
|
|
|
annealing_rate_10 = 0.5 |
165
|
|
|
annealing_rate_100 = 0.9 |
166
|
|
|
|
167
|
|
|
epsilon = 0.03 |
168
|
|
|
|
169
|
|
|
opt = SimulatedAnnealingOptimizer( |
170
|
|
|
search_space, |
171
|
|
|
annealing_rate=annealing_rate_0, |
172
|
|
|
epsilon=epsilon, |
173
|
|
|
initialize={"random": n_initialize}, |
174
|
|
|
) |
175
|
|
|
opt.search(objective_function, n_iter=n_iter) |
176
|
|
|
n_transitions_0 = opt.n_transitions |
177
|
|
|
|
178
|
|
|
opt = SimulatedAnnealingOptimizer( |
179
|
|
|
search_space, |
180
|
|
|
annealing_rate=annealing_rate_1, |
181
|
|
|
epsilon=epsilon, |
182
|
|
|
initialize={"random": n_initialize}, |
183
|
|
|
) |
184
|
|
|
opt.search(objective_function, n_iter=n_iter) |
185
|
|
|
n_transitions_1 = opt.n_transitions |
186
|
|
|
|
187
|
|
|
opt = SimulatedAnnealingOptimizer( |
188
|
|
|
search_space, |
189
|
|
|
annealing_rate=annealing_rate_10, |
190
|
|
|
epsilon=epsilon, |
191
|
|
|
initialize={"random": n_initialize}, |
192
|
|
|
) |
193
|
|
|
opt.search(objective_function, n_iter=n_iter) |
194
|
|
|
n_transitions_10 = opt.n_transitions |
195
|
|
|
|
196
|
|
|
opt = SimulatedAnnealingOptimizer( |
197
|
|
|
search_space, |
198
|
|
|
annealing_rate=annealing_rate_100, |
199
|
|
|
epsilon=epsilon, |
200
|
|
|
initialize={"random": n_initialize}, |
201
|
|
|
) |
202
|
|
|
opt.search(objective_function, n_iter=n_iter) |
203
|
|
|
n_transitions_100 = opt.n_transitions |
204
|
|
|
|
205
|
|
|
print("\n n_transitions_0", n_transitions_0) |
206
|
|
|
print("\n n_transitions_1", n_transitions_1) |
207
|
|
|
print("\n n_transitions_10", n_transitions_10) |
208
|
|
|
print("\n n_transitions_100", n_transitions_100) |
209
|
|
|
|
210
|
|
|
assert n_transitions_0 in [0, 1] |
211
|
|
|
# assert n_transitions_1 < n_transitions_10 < n_transitions_100 |
212
|
|
|
|