Total Complexity | 2 |
Total Lines | 35 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import pytest |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | from gradient_free_optimizers import HillClimbingOptimizer |
||
10 | |||
11 | |||
12 | def parabola_function(para): |
||
13 | loss = para["x"] * para["x"] + para["y"] * para["y"] |
||
14 | return -loss |
||
15 | |||
16 | |||
17 | search_space = { |
||
18 | "x": np.arange(-10, 11, 1), |
||
19 | "y": np.arange(-10, 11, 1), |
||
20 | } |
||
21 | |||
22 | |||
23 | def test_epsilon_0(): |
||
24 | epsilon = 1 / np.inf |
||
25 | |||
26 | opt = HillClimbingOptimizer( |
||
27 | search_space, initialize={"vertices": 1}, epsilon=epsilon |
||
28 | ) |
||
29 | opt.search(parabola_function, n_iter=100) |
||
30 | |||
31 | search_data = opt.search_data |
||
32 | scores = search_data["score"].values |
||
33 | |||
34 | assert np.all(scores == -200) |
||
35 |