Total Complexity | 3 |
Total Lines | 30 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import pytest |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | from gradient_free_optimizers import BayesianOptimizer |
||
10 | |||
11 | |||
12 | def parabola_function(para): |
||
13 | loss = para["x"] * para["x"] + para["y"] * para["y"] |
||
14 | return -loss |
||
15 | |||
16 | |||
17 | search_space = { |
||
18 | "x": np.arange(-1, 1, 1), |
||
19 | "y": np.arange(-1, 1, 1), |
||
20 | } |
||
21 | |||
22 | |||
23 | def test_replacement_0(): |
||
24 | opt = BayesianOptimizer(search_space, replacement=True) |
||
25 | opt.search(parabola_function, n_iter=15) |
||
26 | |||
27 | with pytest.raises(ValueError): |
||
28 | opt = BayesianOptimizer(search_space, replacement=False) |
||
29 | opt.search(parabola_function, n_iter=15) |
||
30 |