Passed
Push — master ( 44bd28...268666 )
by Simon
03:57
created

test_results_0()   A

Complexity

Conditions 1

Size

Total Lines 23
Code Lines 17

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 17
nop 1
dl 0
loc 23
rs 9.55
c 0
b 0
f 0
1
import pytest
2
import numpy as np
3
4
from ._parametrize import pytest_parameter
5
6
7
@pytest.mark.parametrize(*pytest_parameter)
8
def test_results_0(Optimizer):
9
    search_space = {"x1": np.arange(-10, 1, 1)}
10
11
    def objective_function(para):
12
        score = -para["x1"] * para["x1"]
13
        return score
14
15
    initialize = {"random": 2}
16
17
    opt = Optimizer(search_space)
18
    opt.search(
19
        objective_function,
20
        n_iter=30,
21
        memory=False,
22
        verbosity={"print_results": False, "progress_bar": False},
23
        initialize=initialize,
24
    )
25
26
    results_set = set(opt.results["x1"])
27
    search_space_set = set(search_space["x1"])
28
29
    assert results_set.issubset(search_space_set)
30
31
32
@pytest.mark.parametrize(*pytest_parameter)
33
def test_results_1(Optimizer):
34
    search_space = {"x1": np.arange(-10, 1, 1), "x2": np.arange(-10, 1, 1)}
35
36
    def objective_function(para):
37
        score = -(para["x1"] * para["x1"] + para["x2"] * para["x2"])
38
        return score
39
40
    initialize = {"random": 2}
41
42
    opt = Optimizer(search_space)
43
    opt.search(
44
        objective_function,
45
        n_iter=50,
46
        memory=False,
47
        verbosity={"print_results": False, "progress_bar": False},
48
        initialize=initialize,
49
    )
50
51
    results_set_x1 = set(opt.results["x1"])
52
    search_space_set_x1 = set(search_space["x1"])
53
54
    assert results_set_x1.issubset(search_space_set_x1)
55
56
    results_set_x2 = set(opt.results["x2"])
57
    search_space_set_x2 = set(search_space["x2"])
58
59
    assert results_set_x2.issubset(search_space_set_x2)
60