1
|
|
|
import pytest |
2
|
|
|
import numpy as np |
3
|
|
|
|
4
|
|
|
from ._parametrize import pytest_parameter |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
@pytest.mark.parametrize(*pytest_parameter) |
8
|
|
|
def test_results_0(Optimizer): |
9
|
|
|
search_space = {"x1": np.arange(-10, 1, 1)} |
10
|
|
|
|
11
|
|
|
def objective_function(para): |
12
|
|
|
score = -para["x1"] * para["x1"] |
13
|
|
|
return score |
14
|
|
|
|
15
|
|
|
initialize = {"random": 2} |
16
|
|
|
|
17
|
|
|
opt = Optimizer(search_space) |
18
|
|
|
opt.search( |
19
|
|
|
objective_function, |
20
|
|
|
n_iter=30, |
21
|
|
|
memory=False, |
22
|
|
|
verbosity={"print_results": False, "progress_bar": False}, |
23
|
|
|
initialize=initialize, |
24
|
|
|
) |
25
|
|
|
|
26
|
|
|
results_set = set(opt.results["x1"]) |
27
|
|
|
search_space_set = set(search_space["x1"]) |
28
|
|
|
|
29
|
|
|
assert results_set.issubset(search_space_set) |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
@pytest.mark.parametrize(*pytest_parameter) |
33
|
|
|
def test_results_1(Optimizer): |
34
|
|
|
search_space = {"x1": np.arange(-10, 1, 1), "x2": np.arange(-10, 1, 1)} |
35
|
|
|
|
36
|
|
|
def objective_function(para): |
37
|
|
|
score = -(para["x1"] * para["x1"] + para["x2"] * para["x2"]) |
38
|
|
|
return score |
39
|
|
|
|
40
|
|
|
initialize = {"random": 2} |
41
|
|
|
|
42
|
|
|
opt = Optimizer(search_space) |
43
|
|
|
opt.search( |
44
|
|
|
objective_function, |
45
|
|
|
n_iter=50, |
46
|
|
|
memory=False, |
47
|
|
|
verbosity={"print_results": False, "progress_bar": False}, |
48
|
|
|
initialize=initialize, |
49
|
|
|
) |
50
|
|
|
|
51
|
|
|
results_set_x1 = set(opt.results["x1"]) |
52
|
|
|
search_space_set_x1 = set(search_space["x1"]) |
53
|
|
|
|
54
|
|
|
assert results_set_x1.issubset(search_space_set_x1) |
55
|
|
|
|
56
|
|
|
results_set_x2 = set(opt.results["x2"]) |
57
|
|
|
search_space_set_x2 = set(search_space["x2"]) |
58
|
|
|
|
59
|
|
|
assert results_set_x2.issubset(search_space_set_x2) |
60
|
|
|
|