1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import math |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from ..core_optimizer import CoreOptimizer |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def split(positions_l, population): |
12
|
|
|
div_int = math.ceil(len(positions_l) / population) |
13
|
|
|
dist_init_positions = [] |
14
|
|
|
|
15
|
|
|
for nth_indiv in range(population): |
16
|
|
|
indiv_pos = [] |
17
|
|
|
for nth_indiv_pos in range(div_int): |
18
|
|
|
idx = nth_indiv + nth_indiv_pos * population |
19
|
|
|
if idx < len(positions_l): |
20
|
|
|
indiv_pos.append(positions_l[idx]) |
21
|
|
|
|
22
|
|
|
dist_init_positions.append(indiv_pos) |
23
|
|
|
|
24
|
|
|
return dist_init_positions |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class BasePopulationOptimizer(CoreOptimizer): |
28
|
|
|
def __init__(self, *args, **kwargs): |
29
|
|
|
super().__init__(*args, **kwargs) |
30
|
|
|
|
31
|
|
|
self.eval_times = [] |
32
|
|
|
self.iter_times = [] |
33
|
|
|
|
34
|
|
|
self.init_done = False |
35
|
|
|
|
36
|
|
|
def _iterations(self, positioners): |
37
|
|
|
nth_iter = 0 |
38
|
|
|
for p in positioners: |
39
|
|
|
nth_iter = nth_iter + len(p.pos_new_list) |
40
|
|
|
|
41
|
|
|
return nth_iter |
42
|
|
|
|
43
|
|
|
def sort_pop_best_score(self): |
44
|
|
|
scores_list = [] |
45
|
|
|
for _p_ in self.optimizers: |
46
|
|
|
scores_list.append(_p_.score_current) |
47
|
|
|
|
48
|
|
|
scores_np = np.array(scores_list) |
49
|
|
|
idx_sorted_ind = list(scores_np.argsort()[::-1]) |
50
|
|
|
|
51
|
|
|
self.pop_sorted = [self.optimizers[i] for i in idx_sorted_ind] |
52
|
|
|
|
53
|
|
|
def _create_population(self, Optimizer): |
54
|
|
|
if isinstance(self.population, int): |
55
|
|
|
pop_size = self.population |
56
|
|
|
else: |
57
|
|
|
pop_size = len(self.population) |
58
|
|
|
diff_init = pop_size - self.init.n_inits |
59
|
|
|
|
60
|
|
|
if diff_init > 0: |
61
|
|
|
self.init.add_n_random_init_pos(diff_init) |
62
|
|
|
|
63
|
|
|
if isinstance(self.population, int): |
64
|
|
|
distributed_init_positions = split( |
65
|
|
|
self.init.init_positions_l, self.population |
66
|
|
|
) |
67
|
|
|
|
68
|
|
|
population = [] |
69
|
|
|
for init_positions in distributed_init_positions: |
70
|
|
|
init_values = self.conv.positions2values(init_positions) |
71
|
|
|
init_paras = self.conv.values2paras(init_values) |
72
|
|
|
|
73
|
|
|
population.append( |
74
|
|
|
Optimizer( |
75
|
|
|
self.conv.search_space, |
76
|
|
|
rand_rest_p=self.rand_rest_p, |
77
|
|
|
initialize={"warm_start": init_paras}, |
78
|
|
|
) |
79
|
|
|
) |
80
|
|
|
else: |
81
|
|
|
population = self.population |
82
|
|
|
|
83
|
|
|
return population |
84
|
|
|
|
85
|
|
|
@CoreOptimizer.track_new_score |
86
|
|
|
def evaluate_init(self, score_new): |
87
|
|
|
self.p_current.evaluate_init(score_new) |
88
|
|
|
|
89
|
|
|
def finish_initialization(self): |
90
|
|
|
self.search_state = "iter" |
91
|
|
|
|