| Conditions | 1 |
| Total Lines | 69 |
| Code Lines | 55 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # Author: Simon Blanke |
||
| 24 | def test_start_temp_0(): |
||
| 25 | n_initialize = 1 |
||
| 26 | |||
| 27 | start_temp_0 = 0 |
||
| 28 | start_temp_1 = 0.1 |
||
| 29 | start_temp_10 = 1 |
||
| 30 | start_temp_100 = 100 |
||
| 31 | start_temp_inf = np.inf |
||
| 32 | |||
| 33 | epsilon = 1 / np.inf |
||
| 34 | |||
| 35 | opt = SimulatedAnnealingOptimizer( |
||
| 36 | search_space, |
||
| 37 | start_temp=start_temp_0, |
||
| 38 | epsilon=epsilon, |
||
| 39 | initialize={"random": n_initialize}, |
||
| 40 | ) |
||
| 41 | opt.search(objective_function, n_iter=n_iter) |
||
| 42 | n_transitions_0 = opt.n_transitions |
||
| 43 | |||
| 44 | opt = SimulatedAnnealingOptimizer( |
||
| 45 | search_space, |
||
| 46 | start_temp=start_temp_1, |
||
| 47 | epsilon=epsilon, |
||
| 48 | initialize={"random": n_initialize}, |
||
| 49 | ) |
||
| 50 | opt.search(objective_function, n_iter=n_iter) |
||
| 51 | n_transitions_1 = opt.n_transitions |
||
| 52 | |||
| 53 | opt = SimulatedAnnealingOptimizer( |
||
| 54 | search_space, |
||
| 55 | start_temp=start_temp_10, |
||
| 56 | epsilon=epsilon, |
||
| 57 | initialize={"random": n_initialize}, |
||
| 58 | ) |
||
| 59 | opt.search(objective_function, n_iter=n_iter) |
||
| 60 | n_transitions_10 = opt.n_transitions |
||
| 61 | |||
| 62 | opt = SimulatedAnnealingOptimizer( |
||
| 63 | search_space, |
||
| 64 | start_temp=start_temp_100, |
||
| 65 | epsilon=epsilon, |
||
| 66 | initialize={"random": n_initialize}, |
||
| 67 | ) |
||
| 68 | opt.search(objective_function, n_iter=n_iter) |
||
| 69 | n_transitions_100 = opt.n_transitions |
||
| 70 | |||
| 71 | opt = SimulatedAnnealingOptimizer( |
||
| 72 | search_space, |
||
| 73 | start_temp=start_temp_inf, |
||
| 74 | epsilon=epsilon, |
||
| 75 | initialize={"random": n_initialize}, |
||
| 76 | ) |
||
| 77 | opt.search(objective_function, n_iter=n_iter) |
||
| 78 | n_transitions_inf = opt.n_transitions |
||
| 79 | |||
| 80 | print("\n n_transitions_0", n_transitions_0) |
||
| 81 | print("\n n_transitions_1", n_transitions_1) |
||
| 82 | print("\n n_transitions_10", n_transitions_10) |
||
| 83 | print("\n n_transitions_100", n_transitions_100) |
||
| 84 | print("\n n_transitions_inf", n_transitions_inf) |
||
| 85 | |||
| 86 | assert n_transitions_0 == start_temp_0 |
||
| 87 | assert ( |
||
| 88 | n_transitions_1 |
||
| 89 | == n_transitions_10 |
||
| 90 | == n_transitions_100 |
||
| 91 | == n_transitions_inf |
||
| 92 | == n_iter - n_initialize |
||
| 93 | ) |
||
| 182 |