1
|
|
|
def warn(*args, **kwargs): |
2
|
|
|
pass |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
import warnings |
6
|
|
|
|
7
|
|
|
warnings.warn = warn |
8
|
|
|
|
9
|
|
|
import os |
10
|
|
|
import numpy as np |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
from gradient_free_optimizers import ( |
14
|
|
|
HillClimbingOptimizer, |
15
|
|
|
StochasticHillClimbingOptimizer, |
16
|
|
|
RepulsingHillClimbingOptimizer, |
17
|
|
|
SimulatedAnnealingOptimizer, |
18
|
|
|
DownhillSimplexOptimizer, |
19
|
|
|
RandomSearchOptimizer, |
20
|
|
|
GridSearchOptimizer, |
21
|
|
|
RandomRestartHillClimbingOptimizer, |
22
|
|
|
PowellsMethod, |
23
|
|
|
PatternSearch, |
24
|
|
|
LipschitzOptimizer, |
25
|
|
|
DirectAlgorithm, |
26
|
|
|
RandomAnnealingOptimizer, |
27
|
|
|
ParallelTemperingOptimizer, |
28
|
|
|
ParticleSwarmOptimizer, |
29
|
|
|
SpiralOptimization, |
30
|
|
|
EvolutionStrategyOptimizer, |
31
|
|
|
BayesianOptimizer, |
32
|
|
|
TreeStructuredParzenEstimators, |
33
|
|
|
ForestOptimizer, |
34
|
|
|
) |
35
|
|
|
from surfaces.test_functions import SphereFunction, AckleyFunction |
36
|
|
|
|
37
|
|
|
from search_path_gif import search_path_gif |
38
|
|
|
|
39
|
|
|
here = os.path.dirname(os.path.abspath(__file__)) |
40
|
|
|
|
41
|
|
|
search_space = { |
42
|
|
|
"x0": np.arange(-2, 8, 0.1), |
43
|
|
|
"x1": np.arange(-2, 8, 0.1), |
44
|
|
|
} |
45
|
|
|
|
46
|
|
|
initialize_1 = { |
47
|
|
|
"warm_start": [{"x0": 7, "x1": 7}], |
48
|
|
|
} |
49
|
|
|
initialize_pop = {"vertices": 4} |
50
|
|
|
random_state = 23 |
51
|
|
|
|
52
|
|
|
sphere_function = SphereFunction(n_dim=2) |
53
|
|
|
ackley_function = AckleyFunction() |
54
|
|
|
|
55
|
|
|
objective_function_l = [sphere_function, ackley_function] |
56
|
|
|
|
57
|
|
|
optimizer_l = [ |
58
|
|
|
HillClimbingOptimizer, |
59
|
|
|
StochasticHillClimbingOptimizer, |
60
|
|
|
RepulsingHillClimbingOptimizer, |
61
|
|
|
SimulatedAnnealingOptimizer, |
62
|
|
|
DownhillSimplexOptimizer, |
63
|
|
|
RandomSearchOptimizer, |
64
|
|
|
GridSearchOptimizer, |
65
|
|
|
RandomRestartHillClimbingOptimizer, |
66
|
|
|
PowellsMethod, |
67
|
|
|
PatternSearch, |
68
|
|
|
LipschitzOptimizer, |
69
|
|
|
DirectAlgorithm, |
70
|
|
|
RandomAnnealingOptimizer, |
71
|
|
|
ParallelTemperingOptimizer, |
72
|
|
|
ParticleSwarmOptimizer, |
73
|
|
|
SpiralOptimization, |
74
|
|
|
EvolutionStrategyOptimizer, |
75
|
|
|
BayesianOptimizer, |
76
|
|
|
TreeStructuredParzenEstimators, |
77
|
|
|
ForestOptimizer, |
78
|
|
|
] |
79
|
|
|
""" |
80
|
|
|
|
81
|
|
|
""" |
82
|
|
|
|
83
|
|
|
for objective_function in objective_function_l: |
84
|
|
|
for optimizer in optimizer_l: |
85
|
|
|
if optimizer.computationally_expensive: |
86
|
|
|
n_iter = 50 |
87
|
|
|
else: |
88
|
|
|
n_iter = 150 |
89
|
|
|
|
90
|
|
|
if optimizer.optimizer_type == "population": |
91
|
|
|
initialize = initialize_pop |
92
|
|
|
else: |
93
|
|
|
initialize = initialize_1 |
94
|
|
|
|
95
|
|
|
para_dict = { |
96
|
|
|
"path": os.path.join(here, "gifs"), |
97
|
|
|
"optimizer": optimizer, |
98
|
|
|
"opt_para": {}, |
99
|
|
|
"name": optimizer._name_ + "_" + objective_function._name_ + "_" + ".gif", |
100
|
|
|
"n_iter": n_iter, |
101
|
|
|
"objective_function": objective_function, |
102
|
|
|
"search_space": search_space, |
103
|
|
|
"initialize": initialize, |
104
|
|
|
"random_state": random_state, |
105
|
|
|
} |
106
|
|
|
search_path_gif(**para_dict) |
107
|
|
|
|