Total Complexity | 3 |
Total Lines | 38 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import numpy as np |
||
2 | import pytest |
||
3 | |||
4 | from ._parametrize import optimizers |
||
5 | |||
6 | |||
7 | def objective_function(para): |
||
8 | score = -para["x1"] * para["x1"] |
||
9 | return score |
||
10 | |||
11 | |||
12 | search_space = { |
||
13 | "x1": np.arange(-10, 10, 0.1), |
||
14 | } |
||
15 | |||
16 | |||
17 | @pytest.mark.parametrize(*optimizers) |
||
18 | def test_search_step_0(Optimizer): |
||
19 | n_iter = 100 |
||
20 | |||
21 | opt = Optimizer(search_space) |
||
22 | |||
23 | opt.init_search( |
||
24 | objective_function, |
||
25 | n_iter, |
||
26 | max_time=None, |
||
27 | max_score=None, |
||
28 | early_stopping=None, |
||
29 | memory=True, |
||
30 | memory_warm_start=None, |
||
31 | verbosity=["progress_bar", "print_results", "print_times"], |
||
32 | ) |
||
33 | |||
34 | for nth_iter in range(n_iter): |
||
35 | opt.search_step(nth_iter) |
||
36 | |||
37 | opt.finish_search() |
||
38 |