| Total Complexity | 3 |
| Total Lines | 38 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import numpy as np |
||
| 2 | import pytest |
||
| 3 | |||
| 4 | from ._parametrize import optimizers |
||
| 5 | |||
| 6 | |||
| 7 | def objective_function(para): |
||
| 8 | score = -para["x1"] * para["x1"] |
||
| 9 | return score |
||
| 10 | |||
| 11 | |||
| 12 | search_space = { |
||
| 13 | "x1": np.arange(-10, 10, 0.1), |
||
| 14 | } |
||
| 15 | |||
| 16 | |||
| 17 | @pytest.mark.parametrize(*optimizers) |
||
| 18 | def test_search_step_0(Optimizer): |
||
| 19 | n_iter = 100 |
||
| 20 | |||
| 21 | opt = Optimizer(search_space) |
||
| 22 | |||
| 23 | opt.init_search( |
||
| 24 | objective_function, |
||
| 25 | n_iter, |
||
| 26 | max_time=None, |
||
| 27 | max_score=None, |
||
| 28 | early_stopping=None, |
||
| 29 | memory=True, |
||
| 30 | memory_warm_start=None, |
||
| 31 | verbosity=["progress_bar", "print_results", "print_times"], |
||
| 32 | ) |
||
| 33 | |||
| 34 | for nth_iter in range(n_iter): |
||
| 35 | opt.search_step(nth_iter) |
||
| 36 | |||
| 37 | opt.finish_search() |
||
| 38 |