1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
from ..base_optimizer import BaseOptimizer |
7
|
|
|
from ...search import Search |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
from itertools import compress |
11
|
|
|
|
12
|
|
|
np.seterr(divide="ignore", invalid="ignore") |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class SMBO(BaseOptimizer, Search): |
16
|
|
|
def __init__( |
17
|
|
|
self, |
18
|
|
|
search_space, |
19
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
20
|
|
|
warm_start_smbo=None, |
21
|
|
|
sampling={"random": 100000}, |
22
|
|
|
warnings=100000000, |
23
|
|
|
): |
24
|
|
|
super().__init__(search_space, initialize) |
25
|
|
|
self.warm_start_smbo = warm_start_smbo |
26
|
|
|
self.sampling = sampling |
27
|
|
|
self.warnings = warnings |
28
|
|
|
|
29
|
|
|
def init_position_combinations(self): |
30
|
|
|
search_space_size = 1 |
31
|
|
|
for value_ in self.conv.search_space.values(): |
32
|
|
|
search_space_size *= len(value_) |
33
|
|
|
|
34
|
|
|
self.X_sample = [] |
35
|
|
|
self.Y_sample = [] |
36
|
|
|
|
37
|
|
|
if self.warnings: |
38
|
|
|
self.memory_warning(search_space_size) |
39
|
|
|
self.all_pos_comb = self._all_possible_pos() |
40
|
|
|
|
41
|
|
|
def init_warm_start_smbo(self): |
42
|
|
|
if self.warm_start_smbo is not None: |
43
|
|
|
X_sample_values = self.warm_start_smbo[self.conv.para_names].values |
44
|
|
|
Y_sample = self.warm_start_smbo["score"].values |
45
|
|
|
|
46
|
|
|
self.X_sample = self.conv.values2positions(X_sample_values) |
47
|
|
|
self.Y_sample = list(Y_sample) |
48
|
|
|
|
49
|
|
|
# filter out nan |
50
|
|
|
mask = ~np.isnan(Y_sample) |
51
|
|
|
self.X_sample = list(compress(self.X_sample, mask)) |
52
|
|
|
self.Y_sample = list(compress(self.Y_sample, mask)) |
53
|
|
|
|
54
|
|
|
def track_X_sample(func): |
55
|
|
|
def wrapper(self, *args, **kwargs): |
56
|
|
|
pos = func(self, *args, **kwargs) |
57
|
|
|
self.X_sample.append(pos) |
58
|
|
|
return pos |
59
|
|
|
|
60
|
|
|
return wrapper |
61
|
|
|
|
62
|
|
|
def random_sampling(self): |
63
|
|
|
n_samples = self.sampling["random"] |
64
|
|
|
n_pos_comb = self.all_pos_comb.shape[0] |
65
|
|
|
|
66
|
|
|
if n_pos_comb <= n_samples: |
67
|
|
|
return self.all_pos_comb |
68
|
|
|
else: |
69
|
|
|
_idx_sample = np.random.choice(n_pos_comb, n_samples, replace=False) |
70
|
|
|
pos_comb_sampled = self.all_pos_comb[_idx_sample, :] |
71
|
|
|
return pos_comb_sampled |
72
|
|
|
|
73
|
|
|
def _all_possible_pos(self): |
74
|
|
|
if self.conv.max_dim < 255: |
75
|
|
|
_dtype = np.uint8 |
76
|
|
|
elif self.conv.max_dim < 65535: |
77
|
|
|
_dtype = np.uint16 |
78
|
|
|
elif self.conv.max_dim < 4294967295: |
79
|
|
|
_dtype = np.uint32 |
80
|
|
|
else: |
81
|
|
|
_dtype = np.uint64 |
82
|
|
|
|
83
|
|
|
pos_space = [] |
84
|
|
|
for dim_ in self.conv.dim_sizes: |
85
|
|
|
pos_space.append(np.arange(dim_, dtype=_dtype)) |
86
|
|
|
|
87
|
|
|
n_dim = len(pos_space) |
88
|
|
|
return np.array(np.meshgrid(*pos_space)).T.reshape(-1, n_dim) |
89
|
|
|
|
90
|
|
|
def memory_warning(self, search_space_size): |
91
|
|
|
if search_space_size > self.warnings: |
92
|
|
|
warning_message0 = "\n Warning:" |
93
|
|
|
warning_message1 = ( |
94
|
|
|
"\n search space size of " |
95
|
|
|
+ str(search_space_size) |
96
|
|
|
+ " exceeding recommended limit." |
97
|
|
|
) |
98
|
|
|
warning_message3 = "\n Reduce search space size for better performance." |
99
|
|
|
print(warning_message0 + warning_message1 + warning_message3) |
100
|
|
|
|
101
|
|
|
@track_X_sample |
102
|
|
|
def init_pos(self, pos): |
103
|
|
|
super().init_pos(pos) |
104
|
|
|
return pos |
105
|
|
|
|