1
|
|
|
import time |
2
|
|
|
import pytest |
3
|
|
|
import numpy as np |
4
|
|
|
from sklearn.datasets import load_breast_cancer |
5
|
|
|
from sklearn.model_selection import cross_val_score |
6
|
|
|
from sklearn.tree import DecisionTreeClassifier |
7
|
|
|
|
8
|
|
|
from ._parametrize import optimizers |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def objective_function(para): |
12
|
|
|
score = -para["x1"] * para["x1"] |
13
|
|
|
return score |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
search_space = { |
17
|
|
|
"x1": np.arange(0, 10, 0.1), |
18
|
|
|
} |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
@pytest.mark.parametrize(*optimizers) |
22
|
|
|
def test_early_stop_0(Optimizer): |
23
|
|
|
early_stopping = { |
24
|
|
|
"n_iter_no_change": 5, |
25
|
|
|
"tol_abs": 0.1, |
26
|
|
|
"tol_rel": 0.1, |
27
|
|
|
} |
28
|
|
|
|
29
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
30
|
|
|
opt.search( |
31
|
|
|
objective_function, |
32
|
|
|
n_iter=1000, |
33
|
|
|
early_stopping=early_stopping, |
34
|
|
|
) |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
@pytest.mark.parametrize(*optimizers) |
38
|
|
|
def test_early_stop_1(Optimizer): |
39
|
|
|
early_stopping = { |
40
|
|
|
"n_iter_no_change": 5, |
41
|
|
|
"tol_abs": None, |
42
|
|
|
"tol_rel": 5, |
43
|
|
|
} |
44
|
|
|
|
45
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
46
|
|
|
opt.search( |
47
|
|
|
objective_function, |
48
|
|
|
n_iter=1000, |
49
|
|
|
early_stopping=early_stopping, |
50
|
|
|
) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
@pytest.mark.parametrize(*optimizers) |
54
|
|
|
def test_early_stop_2(Optimizer): |
55
|
|
|
early_stopping = { |
56
|
|
|
"n_iter_no_change": 5, |
57
|
|
|
"tol_abs": 0.1, |
58
|
|
|
"tol_rel": None, |
59
|
|
|
} |
60
|
|
|
|
61
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
62
|
|
|
opt.search( |
63
|
|
|
objective_function, |
64
|
|
|
n_iter=1000, |
65
|
|
|
early_stopping=early_stopping, |
66
|
|
|
) |
67
|
|
|
|
68
|
|
|
|
69
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
70
|
|
|
def test_early_stop_3(Optimizer): |
71
|
|
|
def objective_function(para): |
72
|
|
|
score = -para["x1"] * para["x1"] |
73
|
|
|
return score |
74
|
|
|
|
75
|
|
|
search_space = { |
76
|
|
|
"x1": np.arange(0, 100, 0.1), |
77
|
|
|
} |
78
|
|
|
|
79
|
|
|
n_iter_no_change = 5 |
80
|
|
|
early_stopping = { |
81
|
|
|
"n_iter_no_change": n_iter_no_change, |
82
|
|
|
} |
83
|
|
|
|
84
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": [{"x1": 0}]}) |
85
|
|
|
opt.search( |
86
|
|
|
objective_function, |
87
|
|
|
n_iter=100000, |
88
|
|
|
early_stopping=early_stopping, |
89
|
|
|
) |
90
|
|
|
search_data = opt.results |
91
|
|
|
n_performed_iter = len(search_data) |
92
|
|
|
|
93
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
94
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
95
|
|
|
|
96
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
97
|
|
|
|
98
|
|
|
|
99
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
100
|
|
|
def test_early_stop_4(Optimizer): |
101
|
|
|
def objective_function(para): |
102
|
|
|
return para["x1"] |
103
|
|
|
|
104
|
|
|
search_space = { |
105
|
|
|
"x1": np.arange(0, 100, 0.1), |
106
|
|
|
} |
107
|
|
|
|
108
|
|
|
n_iter_no_change = 5 |
109
|
|
|
early_stopping = { |
110
|
|
|
"n_iter_no_change": 5, |
111
|
|
|
"tol_abs": 0.1, |
112
|
|
|
"tol_rel": None, |
113
|
|
|
} |
114
|
|
|
|
115
|
|
|
start1 = {"x1": 0} |
116
|
|
|
start2 = {"x1": 0.1} |
117
|
|
|
start3 = {"x1": 0.2} |
118
|
|
|
start4 = {"x1": 0.3} |
119
|
|
|
start5 = {"x1": 0.4} |
120
|
|
|
|
121
|
|
|
warm_start_l = [ |
122
|
|
|
start1, |
123
|
|
|
start1, |
124
|
|
|
start1, |
125
|
|
|
start1, |
126
|
|
|
start1, |
127
|
|
|
start2, |
128
|
|
|
start2, |
129
|
|
|
start2, |
130
|
|
|
start3, |
131
|
|
|
start3, |
132
|
|
|
start3, |
133
|
|
|
start4, |
134
|
|
|
start4, |
135
|
|
|
start4, |
136
|
|
|
start5, |
137
|
|
|
start5, |
138
|
|
|
start5, |
139
|
|
|
] |
140
|
|
|
n_iter = len(warm_start_l) |
141
|
|
|
|
142
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": warm_start_l}) |
143
|
|
|
opt.search( |
144
|
|
|
objective_function, |
145
|
|
|
n_iter=n_iter, |
146
|
|
|
early_stopping=early_stopping, |
147
|
|
|
) |
148
|
|
|
search_data = opt.results |
149
|
|
|
n_performed_iter = len(search_data) |
150
|
|
|
|
151
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
152
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
153
|
|
|
|
154
|
|
|
assert n_performed_iter == n_iter |
155
|
|
|
|
156
|
|
|
|
157
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
158
|
|
|
def test_early_stop_5(Optimizer): |
159
|
|
|
def objective_function(para): |
160
|
|
|
return para["x1"] |
161
|
|
|
|
162
|
|
|
search_space = { |
163
|
|
|
"x1": np.arange(0, 100, 0.01), |
164
|
|
|
} |
165
|
|
|
|
166
|
|
|
n_iter_no_change = 5 |
167
|
|
|
early_stopping = { |
168
|
|
|
"n_iter_no_change": n_iter_no_change, |
169
|
|
|
"tol_abs": 0.1, |
170
|
|
|
"tol_rel": None, |
171
|
|
|
} |
172
|
|
|
|
173
|
|
|
start1 = {"x1": 0} |
174
|
|
|
start2 = {"x1": 0.09} |
175
|
|
|
start3 = {"x1": 0.20} |
176
|
|
|
|
177
|
|
|
warm_start_l = [ |
178
|
|
|
start1, |
179
|
|
|
start1, |
180
|
|
|
start1, |
181
|
|
|
start1, |
182
|
|
|
start1, |
183
|
|
|
start2, |
184
|
|
|
start2, |
185
|
|
|
start2, |
186
|
|
|
start3, |
187
|
|
|
start3, |
188
|
|
|
start3, |
189
|
|
|
] |
190
|
|
|
n_iter = len(warm_start_l) |
191
|
|
|
|
192
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": warm_start_l}) |
193
|
|
|
opt.search( |
194
|
|
|
objective_function, |
195
|
|
|
n_iter=n_iter, |
196
|
|
|
early_stopping=early_stopping, |
197
|
|
|
) |
198
|
|
|
search_data = opt.results |
199
|
|
|
n_performed_iter = len(search_data) |
200
|
|
|
|
201
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
202
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
203
|
|
|
|
204
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
205
|
|
|
|
206
|
|
|
|
207
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
208
|
|
|
def test_early_stop_6(Optimizer): |
209
|
|
|
def objective_function(para): |
210
|
|
|
return para["x1"] |
211
|
|
|
|
212
|
|
|
search_space = { |
213
|
|
|
"x1": np.arange(0, 100, 0.01), |
214
|
|
|
} |
215
|
|
|
|
216
|
|
|
n_iter_no_change = 5 |
217
|
|
|
early_stopping = { |
218
|
|
|
"n_iter_no_change": 5, |
219
|
|
|
"tol_abs": None, |
220
|
|
|
"tol_rel": 10, |
221
|
|
|
} |
222
|
|
|
|
223
|
|
|
start1 = {"x1": 1} |
224
|
|
|
start2 = {"x1": 1.1} |
225
|
|
|
start3 = {"x1": 1.22} |
226
|
|
|
start4 = {"x1": 1.35} |
227
|
|
|
start5 = {"x1": 1.48} |
228
|
|
|
|
229
|
|
|
warm_start_l = [ |
230
|
|
|
start1, |
231
|
|
|
start1, |
232
|
|
|
start1, |
233
|
|
|
start1, |
234
|
|
|
start1, |
235
|
|
|
start2, |
236
|
|
|
start2, |
237
|
|
|
start2, |
238
|
|
|
start3, |
239
|
|
|
start3, |
240
|
|
|
start3, |
241
|
|
|
start4, |
242
|
|
|
start4, |
243
|
|
|
start4, |
244
|
|
|
start5, |
245
|
|
|
start5, |
246
|
|
|
start5, |
247
|
|
|
] |
248
|
|
|
n_iter = len(warm_start_l) |
249
|
|
|
|
250
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": warm_start_l}) |
251
|
|
|
opt.search( |
252
|
|
|
objective_function, |
253
|
|
|
n_iter=n_iter, |
254
|
|
|
early_stopping=early_stopping, |
255
|
|
|
) |
256
|
|
|
search_data = opt.results |
257
|
|
|
n_performed_iter = len(search_data) |
258
|
|
|
|
259
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
260
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
261
|
|
|
|
262
|
|
|
assert n_performed_iter == n_iter |
263
|
|
|
|
264
|
|
|
|
265
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
266
|
|
|
def test_early_stop_7(Optimizer): |
267
|
|
|
def objective_function(para): |
268
|
|
|
return para["x1"] |
269
|
|
|
|
270
|
|
|
search_space = { |
271
|
|
|
"x1": np.arange(0, 100, 0.01), |
272
|
|
|
} |
273
|
|
|
|
274
|
|
|
n_iter_no_change = 5 |
275
|
|
|
early_stopping = { |
276
|
|
|
"n_iter_no_change": n_iter_no_change, |
277
|
|
|
"tol_abs": None, |
278
|
|
|
"tol_rel": 10, |
279
|
|
|
} |
280
|
|
|
|
281
|
|
|
start1 = {"x1": 1} |
282
|
|
|
start2 = {"x1": 1.09} |
283
|
|
|
start3 = {"x1": 1.20} |
284
|
|
|
|
285
|
|
|
warm_start_l = [ |
286
|
|
|
start1, |
287
|
|
|
start1, |
288
|
|
|
start1, |
289
|
|
|
start1, |
290
|
|
|
start1, |
291
|
|
|
start2, |
292
|
|
|
start2, |
293
|
|
|
start2, |
294
|
|
|
start3, |
295
|
|
|
start3, |
296
|
|
|
start3, |
297
|
|
|
] |
298
|
|
|
n_iter = len(warm_start_l) |
299
|
|
|
|
300
|
|
|
opt = Optimizer(search_space, initialize={"warm_start": warm_start_l}) |
301
|
|
|
opt.search( |
302
|
|
|
objective_function, |
303
|
|
|
n_iter=n_iter, |
304
|
|
|
early_stopping=early_stopping, |
305
|
|
|
) |
306
|
|
|
search_data = opt.results |
307
|
|
|
n_performed_iter = len(search_data) |
308
|
|
|
|
309
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
310
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
311
|
|
|
|
312
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
313
|
|
|
|