Total Complexity | 2 |
Total Lines | 50 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import pytest |
||
2 | from tqdm import tqdm |
||
3 | import numpy as np |
||
4 | |||
5 | from surfaces.test_functions import RastriginFunction |
||
6 | |||
7 | from gradient_free_optimizers import ( |
||
8 | RandomSearchOptimizer, |
||
9 | RandomRestartHillClimbingOptimizer, |
||
10 | RandomAnnealingOptimizer, |
||
11 | ) |
||
12 | |||
13 | |||
14 | opt_global_l = ( |
||
15 | "Optimizer", |
||
16 | [ |
||
17 | (RandomSearchOptimizer), |
||
18 | (RandomRestartHillClimbingOptimizer), |
||
19 | (RandomAnnealingOptimizer), |
||
20 | ], |
||
21 | ) |
||
22 | |||
23 | |||
24 | @pytest.mark.parametrize(*opt_global_l) |
||
25 | def test_global_perf(Optimizer): |
||
26 | ackley_function = RastriginFunction(n_dim=1, metric="score") |
||
27 | |||
28 | search_space = {"x0": np.arange(-100, 101, 1)} |
||
29 | initialize = {"vertices": 2} |
||
30 | |||
31 | n_opts = 33 |
||
32 | n_iter = 100 |
||
33 | |||
34 | scores = [] |
||
35 | for rnd_st in tqdm(range(n_opts)): |
||
36 | opt = Optimizer(search_space, initialize=initialize, random_state=rnd_st) |
||
37 | opt.search( |
||
38 | ackley_function, |
||
39 | n_iter=n_iter, |
||
40 | memory=False, |
||
41 | verbosity=False, |
||
42 | ) |
||
43 | |||
44 | scores.append(opt.best_score) |
||
45 | score_mean = np.array(scores).mean() |
||
46 | |||
47 | print("\n score_mean", score_mean) |
||
48 | |||
49 | assert score_mean > -5 |
||
50 |