Total Complexity | 11 |
Total Lines | 55 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import numpy as np |
||
6 | from tqdm.auto import tqdm |
||
7 | |||
8 | |||
9 | class ProgressBarLVL0: |
||
10 | def __init__(self): |
||
11 | pass |
||
12 | |||
13 | def init(self, nth_process, n_iter, obj_func): |
||
14 | pass |
||
15 | |||
16 | def update(self, iter, score_new): |
||
17 | pass |
||
18 | |||
19 | def close(self): |
||
20 | pass |
||
21 | |||
22 | def _tqdm_dict(self, nth_process, n_iter, obj_func): |
||
23 | pass |
||
24 | |||
25 | |||
26 | class ProgressBarLVL1: |
||
27 | def __init__(self): |
||
28 | self.best_since_iter = 0 |
||
29 | self.score_best = -np.inf |
||
30 | # tqdm.set_lock(tqdm.get_lock()) |
||
31 | |||
32 | def init(self, nth_process, n_iter, obj_func): |
||
33 | self._tqdm = tqdm(**self._tqdm_dict(nth_process, n_iter, obj_func)) |
||
34 | |||
35 | def update(self, iter, score_new): |
||
36 | self._tqdm.update(iter) |
||
37 | |||
38 | if score_new > self.score_best: |
||
39 | self.score_best = score_new |
||
40 | self.best_since_iter = self._tqdm.n |
||
41 | self._tqdm.set_postfix( |
||
42 | best_score=str(score_new), best_since_iter=self.best_since_iter |
||
43 | ) |
||
44 | |||
45 | def close(self): |
||
46 | self._tqdm.close() |
||
47 | |||
48 | def _tqdm_dict(self, nth_process, n_iter, obj_func): |
||
49 | """Generates the parameter dict for tqdm in the iteration-loop of each optimizer""" |
||
50 | return { |
||
51 | "total": n_iter, |
||
52 | "desc": "Process " + str(nth_process) + " -> " + obj_func.__name__, |
||
53 | "position": nth_process, |
||
54 | "leave": True, |
||
55 | } |
||
57 |