Total Complexity | 3 |
Total Lines | 42 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import numpy as np |
||
6 | |||
7 | from ..base_optimizer import BaseOptimizer |
||
8 | from ...search import Search |
||
9 | |||
10 | from numpy.random import normal, laplace, logistic, gumbel |
||
11 | |||
12 | dist_dict = { |
||
13 | "normal": normal, |
||
14 | "laplace": laplace, |
||
15 | "logistic": logistic, |
||
16 | "gumbel": gumbel, |
||
17 | } |
||
18 | |||
19 | |||
20 | class HillClimbingOptimizer(BaseOptimizer, Search): |
||
21 | def __init__( |
||
22 | self, search_space, epsilon=0.05, distribution="normal", n_neighbours=1, |
||
23 | ): |
||
24 | super().__init__(search_space) |
||
25 | self.epsilon = epsilon |
||
26 | self.distribution = dist_dict[distribution] |
||
27 | self.n_neighbours = n_neighbours |
||
28 | |||
29 | def _move_climb(self, pos, epsilon_mod=1): |
||
30 | sigma = self.space_dim * self.epsilon * epsilon_mod |
||
31 | pos_normal = self.distribution(pos, sigma, pos.shape) |
||
32 | pos_new_int = np.rint(pos_normal) |
||
33 | |||
34 | n_zeros = [0] * len(self.space_dim) |
||
35 | pos = np.clip(pos_new_int, n_zeros, self.space_dim) |
||
36 | |||
37 | self.pos_new = pos.astype(int) |
||
38 | return self.pos_new |
||
39 | |||
40 | def iterate(self): |
||
41 | return self._move_climb(self.pos_current) |
||
42 | |||
43 |