Total Complexity | 2 |
Total Lines | 37 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import pytest |
||
2 | import random |
||
3 | import numpy as np |
||
4 | |||
5 | from ._parametrize import optimizers |
||
6 | |||
7 | |||
8 | def objective_function(para): |
||
9 | return -(para["x1"] + para["x1"]) |
||
10 | |||
11 | |||
12 | search_space1 = { |
||
13 | "x1": np.array([1]), |
||
14 | "x2": np.arange(-10, 10, 1), |
||
15 | } |
||
16 | |||
17 | search_space2 = { |
||
18 | "x1": np.arange(-10, 10, 1), |
||
19 | "x2": np.array([1]), |
||
20 | } |
||
21 | |||
22 | |||
23 | objective_para = ( |
||
24 | "search_space", |
||
25 | [ |
||
26 | (search_space1), |
||
27 | (search_space2), |
||
28 | ], |
||
29 | ) |
||
30 | |||
31 | |||
32 | @pytest.mark.parametrize(*objective_para) |
||
33 | @pytest.mark.parametrize(*optimizers) |
||
34 | def test_best_results_0(Optimizer, search_space): |
||
35 | opt = Optimizer(search_space) |
||
36 | opt.search(objective_function, n_iter=30) |
||
37 |