1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
|
7
|
|
|
from ._progress_bar import ProgressBarLVL0, ProgressBarLVL1 |
8
|
|
|
from ._times_tracker import TimesTracker |
9
|
|
|
from ._search_statistics import SearchStatistics |
10
|
|
|
from ._print_info import print_info |
11
|
|
|
from ._stop_run import StopRun |
12
|
|
|
from ._results_manager import ResultsManager |
13
|
|
|
from ._objective_adapter import ObjectiveAdapter |
14
|
|
|
from ._memory import CachedObjectiveAdapter |
15
|
|
|
from ._stopping_conditions import OptimizationStopper |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
class Search(TimesTracker, SearchStatistics): |
19
|
|
|
def __init__(self): |
20
|
|
|
super().__init__() |
21
|
|
|
|
22
|
|
|
self.optimizers = [] |
23
|
|
|
self.new_results_list = [] |
24
|
|
|
self.all_results_list = [] |
25
|
|
|
|
26
|
|
|
self.score_l = [] |
27
|
|
|
self.pos_l = [] |
28
|
|
|
self.random_seed = None |
29
|
|
|
|
30
|
|
|
self.results_manager = ResultsManager() |
31
|
|
|
|
32
|
|
|
@TimesTracker.eval_time |
33
|
|
|
def _score(self, pos): |
34
|
|
|
return self.score(pos) |
35
|
|
|
|
36
|
|
|
@TimesTracker.iter_time |
37
|
|
|
def _initialization(self): |
38
|
|
|
self.best_score = self.p_bar.score_best |
39
|
|
|
|
40
|
|
|
init_pos = self.init_pos() |
41
|
|
|
|
42
|
|
|
score_new = self._evaluate_position(init_pos) |
43
|
|
|
self.evaluate_init(score_new) |
44
|
|
|
|
45
|
|
|
self.pos_l.append(init_pos) |
46
|
|
|
self.score_l.append(score_new) |
47
|
|
|
|
48
|
|
|
self.p_bar.update(score_new, init_pos, self.nth_iter) |
49
|
|
|
|
50
|
|
|
self.n_init_total += 1 |
51
|
|
|
self.n_init_search += 1 |
52
|
|
|
|
53
|
|
|
@TimesTracker.iter_time |
54
|
|
|
def _iteration(self): |
55
|
|
|
self.best_score = self.p_bar.score_best |
56
|
|
|
|
57
|
|
|
pos_new = self.iterate() |
58
|
|
|
|
59
|
|
|
score_new = self._evaluate_position(pos_new) |
60
|
|
|
self.evaluate(score_new) |
61
|
|
|
|
62
|
|
|
self.pos_l.append(pos_new) |
63
|
|
|
self.score_l.append(score_new) |
64
|
|
|
|
65
|
|
|
self.p_bar.update(score_new, pos_new, self.nth_iter) |
66
|
|
|
|
67
|
|
|
self.n_iter_total += 1 |
68
|
|
|
self.n_iter_search += 1 |
69
|
|
|
|
70
|
|
|
def search( |
71
|
|
|
self, |
72
|
|
|
objective_function, |
73
|
|
|
n_iter, |
74
|
|
|
max_time=None, |
75
|
|
|
max_score=None, |
76
|
|
|
early_stopping=None, |
77
|
|
|
memory=True, |
78
|
|
|
memory_warm_start=None, |
79
|
|
|
verbosity=["progress_bar", "print_results", "print_times"], |
80
|
|
|
optimum="maximum", |
81
|
|
|
): |
82
|
|
|
self.optimum = optimum |
83
|
|
|
self.init_search( |
84
|
|
|
objective_function, |
85
|
|
|
n_iter, |
86
|
|
|
max_time, |
87
|
|
|
max_score, |
88
|
|
|
early_stopping, |
89
|
|
|
memory, |
90
|
|
|
memory_warm_start, |
91
|
|
|
verbosity, |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
for nth_trial in range(n_iter): |
95
|
|
|
self.search_step(nth_trial) |
96
|
|
|
|
97
|
|
|
# Update stopper with current state |
98
|
|
|
current_score = self.score_l[-1] if self.score_l else -np.inf |
|
|
|
|
99
|
|
|
best_score = self.p_bar.score_best |
100
|
|
|
self.stopper.update(current_score, best_score, nth_trial) |
101
|
|
|
|
102
|
|
|
if self.stopper.should_stop(): |
103
|
|
|
# Log debugging information when stopping |
104
|
|
|
if "debug_stop" in self.verbosity: |
105
|
|
|
debug_info = self.stopper.get_debug_info() |
106
|
|
|
print("\nStopping condition debug info:") |
107
|
|
|
print(json.dumps(debug_info, indent=2)) |
|
|
|
|
108
|
|
|
break |
109
|
|
|
|
110
|
|
|
self.finish_search() |
111
|
|
|
|
112
|
|
|
def _evaluate_position(self, pos: list[int]) -> float: |
113
|
|
|
result, params = self.adapter(pos) |
114
|
|
|
self.results_manager.add(result, params) |
115
|
|
|
self._iter += 1 |
116
|
|
|
return result.score |
117
|
|
|
|
118
|
|
|
@SearchStatistics.init_stats |
119
|
|
|
def init_search( |
120
|
|
|
self, |
121
|
|
|
objective_function, |
122
|
|
|
n_iter, |
123
|
|
|
max_time, |
124
|
|
|
max_score, |
125
|
|
|
early_stopping, |
126
|
|
|
memory, |
127
|
|
|
memory_warm_start, |
128
|
|
|
verbosity, |
129
|
|
|
): |
130
|
|
|
if getattr(self, "optimum", "maximum") == "minimum": |
131
|
|
|
self.objective_function = lambda pos: -objective_function(pos) |
132
|
|
|
else: |
133
|
|
|
self.objective_function = objective_function |
134
|
|
|
self.n_iter = n_iter |
135
|
|
|
self.max_time = max_time |
136
|
|
|
self.max_score = max_score |
137
|
|
|
self.early_stopping = early_stopping |
138
|
|
|
self.memory = memory |
139
|
|
|
self.memory_warm_start = memory_warm_start |
140
|
|
|
self.verbosity = verbosity |
141
|
|
|
|
142
|
|
|
self._iter = 0 |
143
|
|
|
|
144
|
|
|
if self.verbosity is False: |
145
|
|
|
self.verbosity = [] |
146
|
|
|
|
147
|
|
|
start_time = time.time() |
148
|
|
|
self.stopper = OptimizationStopper( |
149
|
|
|
start_time=start_time, |
150
|
|
|
max_time=max_time, |
151
|
|
|
max_score=max_score, |
152
|
|
|
early_stopping=early_stopping, |
153
|
|
|
) |
154
|
|
|
|
155
|
|
|
if "progress_bar" in self.verbosity: |
156
|
|
|
self.p_bar = ProgressBarLVL1( |
157
|
|
|
self.nth_process, self.n_iter, self.objective_function |
158
|
|
|
) |
159
|
|
|
else: |
160
|
|
|
self.p_bar = ProgressBarLVL0( |
161
|
|
|
self.nth_process, self.n_iter, self.objective_function |
162
|
|
|
) |
163
|
|
|
|
164
|
|
|
if self.memory not in [False, None]: |
165
|
|
|
self.adapter = CachedObjectiveAdapter(self.conv, objective_function) |
166
|
|
|
self.adapter.memory(memory_warm_start, memory) |
167
|
|
|
else: |
168
|
|
|
self.adapter = ObjectiveAdapter(self.conv, objective_function) |
169
|
|
|
|
170
|
|
|
self.n_inits_norm = min((self.init.n_inits - self.n_init_total), self.n_iter) |
171
|
|
|
|
172
|
|
|
def finish_search(self): |
173
|
|
|
self.search_data = self.results_manager.dataframe |
174
|
|
|
|
175
|
|
|
self.best_score = self.p_bar.score_best |
176
|
|
|
self.best_value = self.conv.position2value(self.p_bar.pos_best) |
177
|
|
|
self.best_para = self.conv.value2para(self.best_value) |
178
|
|
|
""" |
179
|
|
|
if self.memory not in [False, None]: |
180
|
|
|
self.memory_dict = self.mem.memory_dict |
181
|
|
|
else: |
182
|
|
|
self.memory_dict = {} |
183
|
|
|
""" |
184
|
|
|
self.p_bar.close() |
185
|
|
|
|
186
|
|
|
print_info( |
187
|
|
|
self.verbosity, |
188
|
|
|
self.objective_function, |
189
|
|
|
self.best_score, |
190
|
|
|
self.best_para, |
191
|
|
|
self.eval_times, |
192
|
|
|
self.iter_times, |
193
|
|
|
self.n_iter, |
194
|
|
|
self.random_seed, |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
def search_step(self, nth_iter): |
198
|
|
|
self.nth_iter = nth_iter |
199
|
|
|
|
200
|
|
|
if self.nth_iter < self.n_inits_norm: |
201
|
|
|
self._initialization() |
202
|
|
|
|
203
|
|
|
if self.nth_iter == self.n_init_search: |
204
|
|
|
self.finish_initialization() |
205
|
|
|
|
206
|
|
|
if self.n_init_search <= self.nth_iter < self.n_iter: |
207
|
|
|
self._iteration() |
208
|
|
|
|