|
1
|
|
|
import time |
|
2
|
|
|
import logging |
|
3
|
|
|
from abc import ABC, abstractmethod |
|
4
|
|
|
from dataclasses import dataclass, field |
|
5
|
|
|
from typing import List, Optional, Dict, Any |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
@dataclass |
|
10
|
|
|
class StoppingContext: |
|
11
|
|
|
""" |
|
12
|
|
|
Encapsulates all relevant data for stopping condition evaluation. |
|
13
|
|
|
This creates a clear contract for what data stopping conditions can access. |
|
14
|
|
|
""" |
|
15
|
|
|
|
|
16
|
|
|
iteration: int |
|
17
|
|
|
score_current: float |
|
18
|
|
|
score_best: float |
|
19
|
|
|
score_history: List[float] |
|
20
|
|
|
start_time: float |
|
21
|
|
|
current_time: float |
|
22
|
|
|
|
|
23
|
|
|
@property |
|
24
|
|
|
def elapsed_time(self) -> float: |
|
25
|
|
|
"""Time elapsed since optimization started.""" |
|
26
|
|
|
return self.current_time - self.start_time |
|
27
|
|
|
|
|
28
|
|
|
@property |
|
29
|
|
|
def iterations_since_improvement(self) -> int: |
|
30
|
|
|
"""Number of iterations since the best score was found.""" |
|
31
|
|
|
if not self.score_history: |
|
32
|
|
|
return 0 |
|
33
|
|
|
|
|
34
|
|
|
best_score_idx = np.argmax(self.score_history) |
|
35
|
|
|
return len(self.score_history) - best_score_idx - 1 |
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
class StoppingCondition(ABC): |
|
39
|
|
|
""" |
|
40
|
|
|
Abstract base class for all stopping conditions. |
|
41
|
|
|
Each condition is responsible for a single stopping criterion. |
|
42
|
|
|
""" |
|
43
|
|
|
|
|
44
|
|
|
def __init__(self, name: str): |
|
45
|
|
|
self.name = name |
|
46
|
|
|
self.triggered = False |
|
47
|
|
|
self.trigger_reason = "" |
|
48
|
|
|
self.logger = logging.getLogger(f"{__name__}.{self.name}") |
|
49
|
|
|
|
|
50
|
|
|
@abstractmethod |
|
51
|
|
|
def should_stop(self, context: StoppingContext) -> bool: |
|
52
|
|
|
"""Check if the optimization should stop based on this condition.""" |
|
53
|
|
|
pass |
|
54
|
|
|
|
|
55
|
|
|
@abstractmethod |
|
56
|
|
|
def get_debug_info(self, context: StoppingContext) -> Dict[str, Any]: |
|
57
|
|
|
"""Return detailed information for debugging purposes.""" |
|
58
|
|
|
pass |
|
59
|
|
|
|
|
60
|
|
|
def reset(self): |
|
61
|
|
|
"""Reset the condition to its initial state.""" |
|
62
|
|
|
self.triggered = False |
|
63
|
|
|
self.trigger_reason = "" |
|
64
|
|
|
|
|
65
|
|
|
|
|
66
|
|
View Code Duplication |
class TimeExceededCondition(StoppingCondition): |
|
|
|
|
|
|
67
|
|
|
"""Stops when maximum time limit is exceeded.""" |
|
68
|
|
|
|
|
69
|
|
|
def __init__(self, max_time: Optional[float]): |
|
70
|
|
|
super().__init__("TimeExceeded") |
|
71
|
|
|
self.max_time = max_time |
|
72
|
|
|
|
|
73
|
|
|
def should_stop(self, context: StoppingContext) -> bool: |
|
74
|
|
|
if self.max_time is None: |
|
75
|
|
|
return False |
|
76
|
|
|
|
|
77
|
|
|
if context.elapsed_time > self.max_time: |
|
78
|
|
|
self.triggered = True |
|
79
|
|
|
self.trigger_reason = f"Time limit exceeded: {context.elapsed_time:.2f}s > {self.max_time:.2f}s" |
|
80
|
|
|
self.logger.info(self.trigger_reason) |
|
81
|
|
|
return True |
|
82
|
|
|
return False |
|
83
|
|
|
|
|
84
|
|
|
def get_debug_info(self, context: StoppingContext) -> Dict[str, Any]: |
|
85
|
|
|
return { |
|
86
|
|
|
"condition": self.name, |
|
87
|
|
|
"max_time": self.max_time, |
|
88
|
|
|
"elapsed_time": context.elapsed_time, |
|
89
|
|
|
"time_remaining": ( |
|
90
|
|
|
self.max_time - context.elapsed_time if self.max_time else None |
|
91
|
|
|
), |
|
92
|
|
|
"triggered": self.triggered, |
|
93
|
|
|
"reason": self.trigger_reason, |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
|
|
97
|
|
View Code Duplication |
class ScoreExceededCondition(StoppingCondition): |
|
|
|
|
|
|
98
|
|
|
"""Stops when target score is reached or exceeded.""" |
|
99
|
|
|
|
|
100
|
|
|
def __init__(self, max_score: Optional[float]): |
|
101
|
|
|
super().__init__("ScoreExceeded") |
|
102
|
|
|
self.max_score = max_score |
|
103
|
|
|
|
|
104
|
|
|
def should_stop(self, context: StoppingContext) -> bool: |
|
105
|
|
|
if self.max_score is None: |
|
106
|
|
|
return False |
|
107
|
|
|
|
|
108
|
|
|
if context.score_best >= self.max_score: |
|
109
|
|
|
self.triggered = True |
|
110
|
|
|
self.trigger_reason = f"Target score reached: {context.score_best:.6f} >= {self.max_score:.6f}" |
|
111
|
|
|
self.logger.info(self.trigger_reason) |
|
112
|
|
|
return True |
|
113
|
|
|
return False |
|
114
|
|
|
|
|
115
|
|
|
def get_debug_info(self, context: StoppingContext) -> Dict[str, Any]: |
|
116
|
|
|
return { |
|
117
|
|
|
"condition": self.name, |
|
118
|
|
|
"max_score": self.max_score, |
|
119
|
|
|
"current_best_score": context.score_best, |
|
120
|
|
|
"score_gap": ( |
|
121
|
|
|
self.max_score - context.score_best if self.max_score else None |
|
122
|
|
|
), |
|
123
|
|
|
"triggered": self.triggered, |
|
124
|
|
|
"reason": self.trigger_reason, |
|
125
|
|
|
} |
|
126
|
|
|
|
|
127
|
|
|
|
|
128
|
|
|
class NoImprovementCondition(StoppingCondition): |
|
129
|
|
|
"""Stops when no improvement is observed for a specified number of iterations.""" |
|
130
|
|
|
|
|
131
|
|
|
def __init__( |
|
132
|
|
|
self, |
|
133
|
|
|
n_iter_no_change: int, |
|
134
|
|
|
tol_abs: Optional[float] = None, |
|
135
|
|
|
tol_rel: Optional[float] = None, |
|
136
|
|
|
): |
|
137
|
|
|
super().__init__("NoImprovement") |
|
138
|
|
|
self.n_iter_no_change = n_iter_no_change |
|
139
|
|
|
self.tol_abs = tol_abs |
|
140
|
|
|
self.tol_rel = tol_rel |
|
141
|
|
|
|
|
142
|
|
|
def should_stop(self, context: StoppingContext) -> bool: |
|
143
|
|
|
if len(context.score_history) <= self.n_iter_no_change: |
|
144
|
|
|
return False |
|
145
|
|
|
|
|
146
|
|
|
iterations_stale = context.iterations_since_improvement |
|
147
|
|
|
|
|
148
|
|
|
if iterations_stale >= self.n_iter_no_change: |
|
149
|
|
|
self.triggered = True |
|
150
|
|
|
self.trigger_reason = f"No improvement for {iterations_stale} iterations" |
|
151
|
|
|
self.logger.info(self.trigger_reason) |
|
152
|
|
|
return True |
|
153
|
|
|
|
|
154
|
|
|
# Check tolerance-based early stopping |
|
155
|
|
|
first_n = len(context.score_history) - self.n_iter_no_change |
|
156
|
|
|
scores_before = context.score_history[:first_n] |
|
157
|
|
|
|
|
158
|
|
|
if not scores_before: |
|
159
|
|
|
return False |
|
160
|
|
|
|
|
161
|
|
|
max_score_before = max(scores_before) |
|
162
|
|
|
current_best = context.score_best |
|
163
|
|
|
|
|
164
|
|
|
# Absolute tolerance check |
|
165
|
|
|
if self.tol_abs is not None: |
|
166
|
|
|
improvement = abs(current_best - max_score_before) |
|
167
|
|
|
if improvement < self.tol_abs: |
|
168
|
|
|
self.triggered = True |
|
169
|
|
|
self.trigger_reason = f"Improvement below absolute tolerance: {improvement:.6f} < {self.tol_abs:.6f}" |
|
170
|
|
|
self.logger.info(self.trigger_reason) |
|
171
|
|
|
return True |
|
172
|
|
|
|
|
173
|
|
|
# Relative tolerance check |
|
174
|
|
|
if self.tol_rel is not None and max_score_before != 0: |
|
175
|
|
|
improvement_pct = ( |
|
176
|
|
|
(current_best - max_score_before) / abs(max_score_before) |
|
177
|
|
|
) * 100 |
|
178
|
|
|
if improvement_pct < self.tol_rel: |
|
179
|
|
|
self.triggered = True |
|
180
|
|
|
self.trigger_reason = f"Improvement below relative tolerance: {improvement_pct:.2f}% < {self.tol_rel:.2f}%" |
|
181
|
|
|
self.logger.info(self.trigger_reason) |
|
182
|
|
|
return True |
|
183
|
|
|
|
|
184
|
|
|
return False |
|
185
|
|
|
|
|
186
|
|
|
def get_debug_info(self, context: StoppingContext) -> Dict[str, Any]: |
|
187
|
|
|
iterations_stale = context.iterations_since_improvement |
|
188
|
|
|
|
|
189
|
|
|
debug_info = { |
|
190
|
|
|
"condition": self.name, |
|
191
|
|
|
"n_iter_no_change": self.n_iter_no_change, |
|
192
|
|
|
"iterations_since_improvement": iterations_stale, |
|
193
|
|
|
"tol_abs": self.tol_abs, |
|
194
|
|
|
"tol_rel": self.tol_rel, |
|
195
|
|
|
"triggered": self.triggered, |
|
196
|
|
|
"reason": self.trigger_reason, |
|
197
|
|
|
} |
|
198
|
|
|
|
|
199
|
|
|
if len(context.score_history) > self.n_iter_no_change: |
|
200
|
|
|
first_n = len(context.score_history) - self.n_iter_no_change |
|
201
|
|
|
scores_before = context.score_history[:first_n] |
|
202
|
|
|
if scores_before: |
|
203
|
|
|
max_score_before = max(scores_before) |
|
204
|
|
|
improvement = context.score_best - max_score_before |
|
205
|
|
|
debug_info["improvement_abs"] = improvement |
|
206
|
|
|
if max_score_before != 0: |
|
207
|
|
|
debug_info["improvement_rel_pct"] = ( |
|
208
|
|
|
improvement / abs(max_score_before) |
|
209
|
|
|
) * 100 |
|
210
|
|
|
|
|
211
|
|
|
return debug_info |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
|
class CompositeStoppingCondition(StoppingCondition): |
|
215
|
|
|
"""Combines multiple stopping conditions with OR logic.""" |
|
216
|
|
|
|
|
217
|
|
|
def __init__(self, conditions: List[StoppingCondition]): |
|
218
|
|
|
super().__init__("Composite") |
|
219
|
|
|
self.conditions = conditions |
|
220
|
|
|
|
|
221
|
|
|
def should_stop(self, context: StoppingContext) -> bool: |
|
222
|
|
|
for condition in self.conditions: |
|
223
|
|
|
if condition.should_stop(context): |
|
224
|
|
|
self.triggered = True |
|
225
|
|
|
self.trigger_reason = ( |
|
226
|
|
|
f"Stopped by {condition.name}: {condition.trigger_reason}" |
|
227
|
|
|
) |
|
228
|
|
|
self.logger.info(self.trigger_reason) |
|
229
|
|
|
return True |
|
230
|
|
|
return False |
|
231
|
|
|
|
|
232
|
|
|
def get_debug_info(self, context: StoppingContext) -> Dict[str, Any]: |
|
233
|
|
|
return { |
|
234
|
|
|
"condition": self.name, |
|
235
|
|
|
"triggered": self.triggered, |
|
236
|
|
|
"reason": self.trigger_reason, |
|
237
|
|
|
"sub_conditions": [ |
|
238
|
|
|
condition.get_debug_info(context) for condition in self.conditions |
|
239
|
|
|
], |
|
240
|
|
|
} |
|
241
|
|
|
|
|
242
|
|
|
def reset(self): |
|
243
|
|
|
super().reset() |
|
244
|
|
|
for condition in self.conditions: |
|
245
|
|
|
condition.reset() |
|
246
|
|
|
|
|
247
|
|
|
|
|
248
|
|
|
class OptimizationStopper: |
|
249
|
|
|
""" |
|
250
|
|
|
Main class for managing optimization stopping conditions. |
|
251
|
|
|
Provides a clean interface and comprehensive debugging capabilities. |
|
252
|
|
|
""" |
|
253
|
|
|
|
|
254
|
|
|
def __init__( |
|
255
|
|
|
self, |
|
256
|
|
|
start_time: float, |
|
257
|
|
|
max_time: Optional[float] = None, |
|
258
|
|
|
max_score: Optional[float] = None, |
|
259
|
|
|
early_stopping: Optional[Dict[str, Any]] = None, |
|
260
|
|
|
): |
|
261
|
|
|
self.start_time = start_time |
|
262
|
|
|
self.conditions: List[StoppingCondition] = [] |
|
263
|
|
|
self.score_history: List[float] = [] |
|
264
|
|
|
self.score_best = -np.inf |
|
265
|
|
|
self.iteration = 0 |
|
266
|
|
|
self.logger = logging.getLogger(f"{__name__}.OptimizationStopper") |
|
267
|
|
|
|
|
268
|
|
|
# Build stopping conditions |
|
269
|
|
|
if max_time is not None: |
|
270
|
|
|
self.conditions.append(TimeExceededCondition(max_time)) |
|
271
|
|
|
|
|
272
|
|
|
if max_score is not None: |
|
273
|
|
|
self.conditions.append(ScoreExceededCondition(max_score)) |
|
274
|
|
|
|
|
275
|
|
|
if early_stopping is not None: |
|
276
|
|
|
n_iter = early_stopping.get("n_iter_no_change") |
|
277
|
|
|
if n_iter is not None: |
|
278
|
|
|
self.conditions.append( |
|
279
|
|
|
NoImprovementCondition( |
|
280
|
|
|
n_iter_no_change=n_iter, |
|
281
|
|
|
tol_abs=early_stopping.get("tol_abs"), |
|
282
|
|
|
tol_rel=early_stopping.get("tol_rel"), |
|
283
|
|
|
) |
|
284
|
|
|
) |
|
285
|
|
|
|
|
286
|
|
|
self.composite_condition = CompositeStoppingCondition(self.conditions) |
|
287
|
|
|
|
|
288
|
|
|
def update(self, score_current: float, score_best: float, iteration: int): |
|
289
|
|
|
"""Update the stopper with new optimization state.""" |
|
290
|
|
|
self.score_history.append(score_current) |
|
291
|
|
|
self.score_best = score_best |
|
292
|
|
|
self.iteration = iteration |
|
293
|
|
|
|
|
294
|
|
|
def should_stop(self) -> bool: |
|
295
|
|
|
"""Check if optimization should stop.""" |
|
296
|
|
|
context = StoppingContext( |
|
297
|
|
|
iteration=self.iteration, |
|
298
|
|
|
score_current=self.score_history[-1] if self.score_history else -np.inf, |
|
299
|
|
|
score_best=self.score_best, |
|
300
|
|
|
score_history=self.score_history, |
|
301
|
|
|
start_time=self.start_time, |
|
302
|
|
|
current_time=time.time(), |
|
303
|
|
|
) |
|
304
|
|
|
|
|
305
|
|
|
return self.composite_condition.should_stop(context) |
|
306
|
|
|
|
|
307
|
|
|
def get_debug_info(self) -> Dict[str, Any]: |
|
308
|
|
|
"""Get comprehensive debugging information about stopping conditions.""" |
|
309
|
|
|
context = StoppingContext( |
|
310
|
|
|
iteration=self.iteration, |
|
311
|
|
|
score_current=self.score_history[-1] if self.score_history else -np.inf, |
|
312
|
|
|
score_best=self.score_best, |
|
313
|
|
|
score_history=self.score_history, |
|
314
|
|
|
start_time=self.start_time, |
|
315
|
|
|
current_time=time.time(), |
|
316
|
|
|
) |
|
317
|
|
|
|
|
318
|
|
|
return self.composite_condition.get_debug_info(context) |
|
319
|
|
|
|
|
320
|
|
|
def get_stop_reason(self) -> str: |
|
321
|
|
|
"""Get a human-readable reason for why optimization stopped.""" |
|
322
|
|
|
if self.composite_condition.triggered: |
|
323
|
|
|
return self.composite_condition.trigger_reason |
|
324
|
|
|
return "Optimization not stopped by stopper" |
|
325
|
|
|
|