1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import random |
7
|
|
|
import numpy as np |
8
|
|
|
|
9
|
|
|
from ..search_tracker import SearchTracker |
10
|
|
|
from ...converter import Converter |
11
|
|
|
from ...results_manager import ResultsManager |
12
|
|
|
from ...optimizers.base_optimizer import get_n_inits |
13
|
|
|
from ...init_positions import Initializer |
14
|
|
|
|
15
|
|
|
|
16
|
|
View Code Duplication |
def set_random_seed(nth_process, random_state): |
|
|
|
|
17
|
|
|
""" |
18
|
|
|
Sets the random seed separately for each thread |
19
|
|
|
(to avoid getting the same results in each thread) |
20
|
|
|
""" |
21
|
|
|
if nth_process is None: |
22
|
|
|
nth_process = 0 |
23
|
|
|
|
24
|
|
|
if random_state is None: |
25
|
|
|
random_state = np.random.randint(0, high=2 ** 31 - 2, dtype=np.int64) |
26
|
|
|
|
27
|
|
|
random.seed(random_state + nth_process) |
28
|
|
|
np.random.seed(random_state + nth_process) |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class BasePopulationOptimizer: |
32
|
|
|
def __init__( |
33
|
|
|
self, |
34
|
|
|
search_space, |
35
|
|
|
initialize={"grid": 4, "random": 2, "vertices": 4}, |
36
|
|
|
random_state=None, |
37
|
|
|
rand_rest_p=0, |
38
|
|
|
nth_process=None, |
39
|
|
|
): |
40
|
|
|
super().__init__() |
41
|
|
|
self.conv = Converter(search_space) |
42
|
|
|
self.results_mang = ResultsManager(self.conv) |
43
|
|
|
self.initialize = initialize |
44
|
|
|
self.random_state = random_state |
45
|
|
|
self.rand_rest_p = rand_rest_p |
46
|
|
|
self.nth_process = nth_process |
47
|
|
|
|
48
|
|
|
self.eval_times = [] |
49
|
|
|
self.iter_times = [] |
50
|
|
|
|
51
|
|
|
set_random_seed(nth_process, random_state) |
52
|
|
|
|
53
|
|
|
# get init positions |
54
|
|
|
init = Initializer(self.conv) |
55
|
|
|
self.init_positions = init.set_pos(self.initialize) |
56
|
|
|
|
57
|
|
|
def _iterations(self, positioners): |
58
|
|
|
nth_iter = 0 |
59
|
|
|
for p in positioners: |
60
|
|
|
nth_iter = nth_iter + len(p.pos_new_list) |
61
|
|
|
|
62
|
|
|
return nth_iter |
63
|
|
|
|
64
|
|
|
def _create_population(self, Optimizer): |
65
|
|
|
if isinstance(self.population, int): |
66
|
|
|
population = [] |
67
|
|
|
for pop_ in range(self.population): |
68
|
|
|
population.append( |
69
|
|
|
Optimizer(self.conv.search_space, rand_rest_p=self.rand_rest_p) |
70
|
|
|
) |
71
|
|
|
else: |
72
|
|
|
population = self.population |
73
|
|
|
|
74
|
|
|
n_inits = get_n_inits(self.initialize) |
75
|
|
|
|
76
|
|
|
if n_inits < len(population): |
77
|
|
|
print("\n Warning: Not enough initial positions for population size") |
78
|
|
|
print(" Population size is reduced to", n_inits) |
79
|
|
|
population = population[:n_inits] |
80
|
|
|
|
81
|
|
|
return population |
82
|
|
|
|
83
|
|
|
def finish_initialization(self): |
84
|
|
|
pass |
85
|
|
|
|