1
|
|
|
import pytest |
2
|
|
|
from tqdm import tqdm |
3
|
|
|
import numpy as np |
4
|
|
|
|
5
|
|
|
from ._parametrize import optimizers |
6
|
|
|
|
7
|
|
|
|
8
|
|
|
n_iter_para = ("n_iter", [(10), (20), (30)]) |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
@pytest.mark.parametrize(*n_iter_para) |
12
|
|
|
@pytest.mark.parametrize(*optimizers) |
13
|
|
|
def test_search_tracker(Optimizer, n_iter): |
14
|
|
|
def objective_function(para): |
15
|
|
|
score = -para["x1"] * para["x1"] |
16
|
|
|
return score |
17
|
|
|
|
18
|
|
|
search_space = {"x1": np.arange(-10, 11, 1)} |
19
|
|
|
initialize = {"vertices": 1} |
20
|
|
|
|
21
|
|
|
opt = Optimizer(search_space, initialize=initialize) |
22
|
|
|
opt.search( |
23
|
|
|
objective_function, |
24
|
|
|
n_iter=n_iter, |
25
|
|
|
memory=False, |
26
|
|
|
verbosity=False, |
27
|
|
|
) |
28
|
|
|
|
29
|
|
|
n_new_positions = 0 |
30
|
|
|
n_new_scores = 0 |
31
|
|
|
|
32
|
|
|
n_current_positions = 0 |
33
|
|
|
n_current_scores = 0 |
34
|
|
|
|
35
|
|
|
n_best_positions = 0 |
36
|
|
|
n_best_scores = 0 |
37
|
|
|
|
38
|
|
|
optimizers = opt.optimizers |
39
|
|
|
for optimizer in optimizers: |
40
|
|
|
n_new_positions = n_new_positions + len(optimizer.pos_new_list) |
41
|
|
|
n_new_scores = n_new_scores + len(optimizer.score_new_list) |
42
|
|
|
|
43
|
|
|
n_current_positions = n_current_positions + len(optimizer.pos_current_list) |
44
|
|
|
n_current_scores = n_current_scores + len(optimizer.score_current_list) |
45
|
|
|
|
46
|
|
|
n_best_positions = n_best_positions + len(optimizer.pos_best_list) |
47
|
|
|
n_best_scores = n_best_scores + len(optimizer.score_best_list) |
48
|
|
|
|
49
|
|
|
assert n_new_positions == n_iter |
50
|
|
|
assert n_new_scores == n_iter |
51
|
|
|
|
52
|
|
|
assert n_current_positions == n_current_scores |
53
|
|
|
assert n_current_positions <= n_new_positions |
54
|
|
|
|
55
|
|
|
assert n_best_positions == n_best_scores |
56
|
|
|
assert n_best_positions <= n_new_positions |
57
|
|
|
|