1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
import random |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import pandas as pd |
10
|
|
|
|
11
|
|
|
from multiprocessing.managers import DictProxy |
12
|
|
|
|
13
|
|
|
from .progress_bar import ProgressBarLVL0, ProgressBarLVL1 |
14
|
|
|
from .times_tracker import TimesTracker |
15
|
|
|
from .memory import Memory |
16
|
|
|
from .print_info import print_info |
17
|
|
|
from .stop_run import StopRun |
18
|
|
|
|
19
|
|
|
|
20
|
|
View Code Duplication |
def set_random_seed(nth_process, random_state): |
|
|
|
|
21
|
|
|
""" |
22
|
|
|
Sets the random seed separately for each thread |
23
|
|
|
(to avoid getting the same results in each thread) |
24
|
|
|
""" |
25
|
|
|
if nth_process is None: |
26
|
|
|
nth_process = 0 |
27
|
|
|
|
28
|
|
|
if random_state is None: |
29
|
|
|
random_state = np.random.randint(0, high=2 ** 31 - 2, dtype=np.int64) |
30
|
|
|
|
31
|
|
|
random.seed(random_state + nth_process) |
32
|
|
|
np.random.seed(random_state + nth_process) |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class Search(TimesTracker): |
36
|
|
|
def __init__(self): |
37
|
|
|
super().__init__() |
38
|
|
|
|
39
|
|
|
self.optimizers = [] |
40
|
|
|
self.new_results_list = [] |
41
|
|
|
self.all_results_list = [] |
42
|
|
|
|
43
|
|
|
self.score_l = [] |
44
|
|
|
self.pos_l = [] |
45
|
|
|
|
46
|
|
|
@TimesTracker.eval_time |
47
|
|
|
def _score(self, pos): |
48
|
|
|
return self.score(pos) |
49
|
|
|
|
50
|
|
|
@TimesTracker.iter_time |
51
|
|
|
def _initialization(self, init_pos, nth_iter): |
52
|
|
|
self.nth_iter = nth_iter |
53
|
|
|
self.best_score = self.p_bar.score_best |
54
|
|
|
|
55
|
|
|
self.init_pos(init_pos) |
56
|
|
|
|
57
|
|
|
score_new = self._score(init_pos) |
58
|
|
|
self.evaluate(score_new) |
59
|
|
|
|
60
|
|
|
self.pos_l.append(init_pos) |
61
|
|
|
self.score_l.append(score_new) |
62
|
|
|
|
63
|
|
|
self.p_bar.update(score_new, init_pos, nth_iter) |
64
|
|
|
|
65
|
|
|
@TimesTracker.iter_time |
66
|
|
|
def _iteration(self, nth_iter): |
67
|
|
|
self.nth_iter = nth_iter |
68
|
|
|
self.best_score = self.p_bar.score_best |
69
|
|
|
|
70
|
|
|
pos_new = self.iterate() |
71
|
|
|
|
72
|
|
|
score_new = self._score(pos_new) |
73
|
|
|
self.evaluate(score_new) |
74
|
|
|
|
75
|
|
|
self.pos_l.append(pos_new) |
76
|
|
|
self.score_l.append(score_new) |
77
|
|
|
|
78
|
|
|
self.p_bar.update(score_new, pos_new, nth_iter) |
79
|
|
|
|
80
|
|
|
def _init_search(self): |
81
|
|
|
if "progress_bar" in self.verbosity: |
82
|
|
|
self.p_bar = ProgressBarLVL1( |
83
|
|
|
self.nth_process, self.n_iter, self.objective_function |
84
|
|
|
) |
85
|
|
|
else: |
86
|
|
|
self.p_bar = ProgressBarLVL0( |
87
|
|
|
self.nth_process, self.n_iter, self.objective_function |
88
|
|
|
) |
89
|
|
|
|
90
|
|
|
def print_info(self, *args): |
91
|
|
|
print_info(*args) |
92
|
|
|
|
93
|
|
|
def search( |
94
|
|
|
self, |
95
|
|
|
objective_function, |
96
|
|
|
n_iter, |
97
|
|
|
max_time=None, |
98
|
|
|
max_score=None, |
99
|
|
|
early_stopping=None, |
100
|
|
|
memory=True, |
101
|
|
|
memory_warm_start=None, |
102
|
|
|
verbosity=["progress_bar", "print_results", "print_times"], |
103
|
|
|
): |
104
|
|
|
self.start_time = time.time() |
105
|
|
|
|
106
|
|
|
if verbosity is False: |
107
|
|
|
verbosity = [] |
108
|
|
|
|
109
|
|
|
self.objective_function = objective_function |
110
|
|
|
self.n_iter = n_iter |
111
|
|
|
self.max_time = max_time |
112
|
|
|
self.max_score = max_score |
113
|
|
|
self.early_stopping = early_stopping |
114
|
|
|
self.memory = memory |
115
|
|
|
self.memory_warm_start = memory_warm_start |
116
|
|
|
self.verbosity = verbosity |
117
|
|
|
|
118
|
|
|
self.stop = StopRun(max_time, max_score, early_stopping) |
119
|
|
|
|
120
|
|
|
self._init_search() |
121
|
|
|
|
122
|
|
|
if isinstance(memory, DictProxy): |
123
|
|
|
mem = Memory(memory_warm_start, self.conv, dict_proxy=memory) |
124
|
|
|
self.score = self.results_mang.score(mem.memory(objective_function)) |
125
|
|
|
elif memory is True: |
126
|
|
|
mem = Memory(memory_warm_start, self.conv) |
127
|
|
|
self.score = self.results_mang.score(mem.memory(objective_function)) |
128
|
|
|
else: |
129
|
|
|
self.score = self.results_mang.score(objective_function) |
130
|
|
|
|
131
|
|
|
# loop to initialize N positions |
132
|
|
|
for init_pos, nth_iter in zip(self.init_positions, range(n_iter)): |
133
|
|
|
if self.stop.check(self.start_time, self.p_bar.score_best, self.score_l): |
134
|
|
|
break |
135
|
|
|
self._initialization(init_pos, nth_iter) |
136
|
|
|
|
137
|
|
|
self.finish_initialization() |
138
|
|
|
|
139
|
|
|
# loop to do the iterations |
140
|
|
|
for nth_iter in range(len(self.init_positions), n_iter): |
141
|
|
|
if self.stop.check(self.start_time, self.p_bar.score_best, self.score_l): |
142
|
|
|
break |
143
|
|
|
self._iteration(nth_iter) |
144
|
|
|
|
145
|
|
|
self.search_data = pd.DataFrame(self.results_mang.results_list) |
146
|
|
|
|
147
|
|
|
self.best_score = self.p_bar.score_best |
148
|
|
|
self.best_value = self.conv.position2value(self.p_bar.pos_best) |
149
|
|
|
self.best_para = self.conv.value2para(self.best_value) |
150
|
|
|
|
151
|
|
|
if memory not in [False, None]: |
152
|
|
|
self.memory_dict = mem.memory_dict |
|
|
|
|
153
|
|
|
else: |
154
|
|
|
self.memory_dict = {} |
155
|
|
|
|
156
|
|
|
self.p_bar.close() |
157
|
|
|
|
158
|
|
|
self.print_info( |
159
|
|
|
verbosity, |
160
|
|
|
self.objective_function, |
161
|
|
|
self.best_score, |
162
|
|
|
self.best_para, |
163
|
|
|
self.eval_times, |
164
|
|
|
self.iter_times, |
165
|
|
|
self.n_iter, |
166
|
|
|
) |
167
|
|
|
|