1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import random |
7
|
|
|
import numpy as np |
8
|
|
|
|
9
|
|
|
from ..base_optimizer import BaseOptimizer |
10
|
|
|
from ...search import Search |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def sort_list_idx(list_): |
14
|
|
|
list_np = np.array(list_) |
15
|
|
|
idx_sorted = list(list_np.argsort()[::-1]) |
16
|
|
|
return idx_sorted |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def centeroid(array_list): |
20
|
|
|
centeroid = [] |
21
|
|
|
for idx in range(array_list[0].shape[0]): |
22
|
|
|
center_dim_pos = [] |
23
|
|
|
for array in array_list: |
24
|
|
|
center_dim_pos.append(array[idx]) |
25
|
|
|
|
26
|
|
|
center_dim_mean = np.array(center_dim_pos).mean() |
27
|
|
|
centeroid.append(center_dim_mean) |
28
|
|
|
|
29
|
|
|
return centeroid |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class DownhillSimplexOptimizer(BaseOptimizer, Search): |
33
|
|
|
name = "Downhill Simplex Optimizer" |
34
|
|
|
|
35
|
|
|
def __init__( |
36
|
|
|
self, |
37
|
|
|
*args, |
38
|
|
|
alpha=1, |
39
|
|
|
gamma=2, |
40
|
|
|
beta=0.5, |
41
|
|
|
sigma=0.5, |
42
|
|
|
**kwargs, |
43
|
|
|
): |
44
|
|
|
super().__init__(*args, **kwargs) |
45
|
|
|
|
46
|
|
|
self.alpha = alpha |
47
|
|
|
self.gamma = gamma |
48
|
|
|
self.beta = beta |
49
|
|
|
self.sigma = sigma |
50
|
|
|
|
51
|
|
|
self.n_simp_positions = len(self.conv.search_space) + 1 |
52
|
|
|
self.simp_positions = [] |
53
|
|
|
|
54
|
|
|
self.simplex_step = 0 |
55
|
|
|
|
56
|
|
|
def finish_initialization(self): |
57
|
|
|
idx_sorted = sort_list_idx(self.scores_valid) |
58
|
|
|
self.simplex_pos = [self.positions_valid[idx] for idx in idx_sorted] |
59
|
|
|
self.simplex_scores = [self.scores_valid[idx] for idx in idx_sorted] |
60
|
|
|
|
61
|
|
|
n_inits = len(self.positions_valid) |
62
|
|
|
if n_inits < self.n_simp_positions: |
63
|
|
|
print("\n Error: Not enough initial positions to form simplex") |
64
|
|
|
raise ValueError("Increase number of initial positions") |
65
|
|
|
|
66
|
|
|
self.simplex_step = 1 |
67
|
|
|
|
68
|
|
|
self.i_x_0 = 0 |
69
|
|
|
self.i_x_N_1 = -2 |
70
|
|
|
self.i_x_N = -1 |
71
|
|
|
|
72
|
|
|
@BaseOptimizer.track_nth_iter |
73
|
|
|
def iterate(self): |
74
|
|
|
simplex_stale = all( |
75
|
|
|
[np.array_equal(self.simplex_pos[0], array) for array in self.simplex_pos] |
76
|
|
|
) |
77
|
|
|
|
78
|
|
|
if simplex_stale: |
79
|
|
|
idx_sorted = sort_list_idx(self.scores_valid) |
80
|
|
|
self.simplex_pos = [self.positions_valid[idx] for idx in idx_sorted] |
81
|
|
|
self.simplex_scores = [self.scores_valid[idx] for idx in idx_sorted] |
82
|
|
|
|
83
|
|
|
self.simplex_step = 1 |
84
|
|
|
|
85
|
|
|
if self.simplex_step == 1: |
86
|
|
|
idx_sorted = sort_list_idx(self.simplex_scores) |
87
|
|
|
self.simplex_pos = [self.simplex_pos[idx] for idx in idx_sorted] |
88
|
|
|
self.simplex_scores = [self.simplex_scores[idx] for idx in idx_sorted] |
89
|
|
|
|
90
|
|
|
self.center_array = centeroid(self.simplex_pos[:-1]) |
91
|
|
|
|
92
|
|
|
r_pos = self.center_array + self.alpha * ( |
93
|
|
|
self.center_array - self.simplex_pos[-1] |
94
|
|
|
) |
95
|
|
|
self.r_pos = self.conv2pos(r_pos) |
96
|
|
|
return self.r_pos |
97
|
|
|
|
98
|
|
|
elif self.simplex_step == 2: |
99
|
|
|
e_pos = self.center_array + self.gamma * ( |
100
|
|
|
self.center_array - self.simplex_pos[-1] |
101
|
|
|
) |
102
|
|
|
self.e_pos = self.conv2pos(e_pos) |
103
|
|
|
self.simplex_step = 1 |
104
|
|
|
|
105
|
|
|
return self.e_pos |
106
|
|
|
|
107
|
|
|
elif self.simplex_step == 3: |
108
|
|
|
# iter Contraction |
109
|
|
|
c_pos = self.h_pos + self.beta * (self.center_array - self.h_pos) |
110
|
|
|
c_pos = self.conv2pos(c_pos) |
111
|
|
|
|
112
|
|
|
return c_pos |
113
|
|
|
|
114
|
|
|
elif self.simplex_step == 4: |
115
|
|
|
# iter Shrink |
116
|
|
|
pos = self.simplex_pos[self.compress_idx] |
117
|
|
|
pos = pos + self.sigma * (self.simplex_pos[0] - pos) |
118
|
|
|
|
119
|
|
|
return self.conv2pos(pos) |
120
|
|
|
|
121
|
|
|
def evaluate(self, score_new): |
122
|
|
|
self.score_new = score_new |
123
|
|
|
|
124
|
|
|
if self.simplex_step != 0: |
125
|
|
|
self.prev_pos = self.positions_valid[-1] |
126
|
|
|
|
127
|
|
|
if self.simplex_step == 1: |
128
|
|
|
# self.r_pos = self.prev_pos |
129
|
|
|
self.r_score = score_new |
130
|
|
|
|
131
|
|
|
if self.r_score > self.simplex_scores[0]: |
132
|
|
|
self.simplex_step = 2 |
133
|
|
|
|
134
|
|
|
elif self.r_score > self.simplex_scores[-2]: |
135
|
|
|
# if r is better than x N-1 |
136
|
|
|
self.simplex_pos[-1] = self.r_pos |
137
|
|
|
self.simplex_scores[-1] = self.r_score |
138
|
|
|
self.simplex_step = 1 |
139
|
|
|
|
140
|
|
|
if self.simplex_scores[-1] > self.r_score: |
141
|
|
|
self.h_pos = self.simplex_pos[-1] |
142
|
|
|
self.h_score = self.simplex_scores[-1] |
143
|
|
|
else: |
144
|
|
|
self.h_pos = self.r_pos |
145
|
|
|
self.h_score = self.r_score |
146
|
|
|
|
147
|
|
|
self.simplex_step = 3 |
148
|
|
|
|
149
|
|
|
elif self.simplex_step == 2: |
150
|
|
|
self.e_score = score_new |
151
|
|
|
|
152
|
|
|
if self.e_score > self.r_score: |
153
|
|
|
self.simplex_scores[-1] = self.e_pos |
154
|
|
|
elif self.r_score > self.e_score: |
155
|
|
|
self.simplex_scores[-1] = self.r_pos |
156
|
|
|
else: |
157
|
|
|
self.simplex_scores[-1] = random.choice([self.e_pos, self.r_pos])[0] |
158
|
|
|
|
159
|
|
|
elif self.simplex_step == 3: |
160
|
|
|
# eval Contraction |
161
|
|
|
self.c_pos = self.prev_pos |
162
|
|
|
self.c_score = score_new |
163
|
|
|
|
164
|
|
|
if self.c_score > self.simplex_scores[-1]: |
165
|
|
|
self.simplex_scores[-1] = self.c_score |
166
|
|
|
self.simplex_pos[-1] = self.c_pos |
167
|
|
|
|
168
|
|
|
self.simplex_step = 1 |
169
|
|
|
|
170
|
|
|
else: |
171
|
|
|
# start Shrink |
172
|
|
|
self.simplex_step = 4 |
173
|
|
|
self.compress_idx = 0 |
174
|
|
|
|
175
|
|
|
elif self.simplex_step == 4: |
176
|
|
|
# eval Shrink |
177
|
|
|
self.simplex_scores[self.compress_idx] = score_new |
178
|
|
|
self.simplex_pos[self.compress_idx] = self.prev_pos |
179
|
|
|
|
180
|
|
|
self.compress_idx += 1 |
181
|
|
|
|
182
|
|
|
if self.compress_idx == self.n_simp_positions: |
183
|
|
|
self.simplex_step = 1 |
184
|
|
|
|