Total Complexity | 2 |
Total Lines | 38 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import pytest |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | from gradient_free_optimizers import GridSearchOptimizer |
||
10 | |||
11 | |||
12 | def parabola_function(para): |
||
13 | loss = para["x"] * para["x"] + para["y"] * para["y"] |
||
14 | return -loss |
||
15 | |||
16 | |||
17 | search_space = { |
||
18 | "x": np.arange(-100, 100, 1), |
||
19 | "y": np.arange(-100, 100, 1), |
||
20 | } |
||
21 | |||
22 | n_iter = 50 |
||
23 | |||
24 | |||
25 | def test_direction_0(): |
||
26 | n_initialize = 1 |
||
27 | opt = GridSearchOptimizer( |
||
28 | search_space, initialize={"vertices": n_initialize}, direction="orthogonal" |
||
29 | ) |
||
30 | opt.search(parabola_function, n_iter=n_iter) |
||
31 | search_data = opt.search_data |
||
32 | |||
33 | print("\n search_data \n", search_data, "\n") |
||
34 | y_data_count = search_data["y"].value_counts().to_dict() |
||
35 | print("\n y_data_count \n", y_data_count, "\n") |
||
36 | |||
37 | assert y_data_count[-100] >= n_iter - n_initialize |
||
38 |