1
|
|
|
import pytest |
2
|
|
|
import numpy as np |
3
|
|
|
import pandas as pd |
4
|
|
|
from gradient_free_optimizers.converter import Converter |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def equal_arraysInList(list1, list2): |
8
|
|
|
return all((e1 == e2).all() for e1, e2 in zip(list1, list2)) |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def equal_dictKeysValues(dict1, dict2): |
12
|
|
|
if len(dict1.keys()) != len(dict2.keys()): |
13
|
|
|
return False |
14
|
|
|
for key1 in dict1.keys: |
15
|
|
|
if dict1[key1] != dict2[key1]: |
16
|
|
|
return False |
17
|
|
|
|
18
|
|
|
return True |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
def get_idx_order(list1, list2): |
22
|
|
|
return [idx for o in list1 for idx, name in enumerate(list2) if o == name] |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def reorder(list1, idx_list): |
26
|
|
|
return [list1[i] for i in idx_list] |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def unordered_dict_workaround(conv, order): |
30
|
|
|
# workaround for doing this test with unordered dicts |
31
|
|
|
|
32
|
|
|
idx_order = get_idx_order(order, conv.para_names) |
33
|
|
|
search_space_values_reordered = reorder( |
34
|
|
|
conv.search_space_values, idx_order |
35
|
|
|
) |
36
|
|
|
para_names_reordered = reorder(conv.para_names, idx_order) |
37
|
|
|
|
38
|
|
|
conv.search_space_values = search_space_values_reordered |
39
|
|
|
conv.para_names = para_names_reordered |
40
|
|
|
|
41
|
|
|
return conv |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
######### test position2value ######### |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
position2value_test_para_0 = [ |
48
|
|
|
(np.array([0]), np.array([-10])), |
49
|
|
|
(np.array([20]), np.array([10])), |
50
|
|
|
(np.array([10]), np.array([0])), |
51
|
|
|
] |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
@pytest.mark.parametrize("test_input,expected", position2value_test_para_0) |
55
|
|
|
def test_position2value_0(test_input, expected): |
56
|
|
|
search_space = { |
57
|
|
|
"x1": np.arange(-10, 11, 1), |
58
|
|
|
} |
59
|
|
|
|
60
|
|
|
conv = Converter(search_space) |
61
|
|
|
value = conv.position2value(test_input) |
62
|
|
|
|
63
|
|
|
assert value == expected |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
position2value_test_para_1 = [ |
67
|
|
|
(np.array([0, 0]), np.array([-10, 0])), |
68
|
|
|
(np.array([20, 0]), np.array([10, 0])), |
69
|
|
|
(np.array([10, 10]), np.array([0, 10])), |
70
|
|
|
] |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
@pytest.mark.parametrize("test_input,expected", position2value_test_para_1) |
74
|
|
|
def test_position2value_1(test_input, expected): |
75
|
|
|
search_space = { |
76
|
|
|
"x1": np.arange(-10, 11, 1), |
77
|
|
|
"x2": np.arange(0, 11, 1), |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
conv = Converter(search_space) |
81
|
|
|
|
82
|
|
|
order = ["x1", "x2"] |
83
|
|
|
conv = unordered_dict_workaround(conv, order) |
84
|
|
|
|
85
|
|
|
value = conv.position2value(test_input) |
86
|
|
|
|
87
|
|
|
assert (value == expected).all() |
88
|
|
|
|
89
|
|
|
|
90
|
|
|
######### test value2position ######### |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
value2position_test_para_0 = [ |
94
|
|
|
(np.array([-10]), np.array([0])), |
95
|
|
|
(np.array([10]), np.array([20])), |
96
|
|
|
(np.array([0]), np.array([10])), |
97
|
|
|
] |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
@pytest.mark.parametrize("test_input,expected", value2position_test_para_0) |
101
|
|
|
def test_value2position_0(test_input, expected): |
102
|
|
|
search_space = { |
103
|
|
|
"x1": np.arange(-10, 11, 1), |
104
|
|
|
} |
105
|
|
|
|
106
|
|
|
conv = Converter(search_space) |
107
|
|
|
position = conv.value2position(test_input) |
108
|
|
|
|
109
|
|
|
assert position == expected |
110
|
|
|
|
111
|
|
|
|
112
|
|
|
value2position_test_para_1 = [ |
113
|
|
|
(np.array([-10, 11]), np.array([0, 10])), |
114
|
|
|
(np.array([10, 11]), np.array([20, 10])), |
115
|
|
|
(np.array([0, 0]), np.array([10, 0])), |
116
|
|
|
] |
117
|
|
|
|
118
|
|
|
|
119
|
|
|
@pytest.mark.parametrize("test_input,expected", value2position_test_para_1) |
120
|
|
|
def test_value2position_1(test_input, expected): |
121
|
|
|
search_space = { |
122
|
|
|
"x1": np.arange(-10, 11, 1), |
123
|
|
|
"x2": np.arange(0, 11, 1), |
124
|
|
|
} |
125
|
|
|
|
126
|
|
|
conv = Converter(search_space) |
127
|
|
|
order = ["x1", "x2"] |
128
|
|
|
conv = unordered_dict_workaround(conv, order) |
129
|
|
|
position = conv.value2position(test_input) |
130
|
|
|
|
131
|
|
|
assert (position == expected).all() |
132
|
|
|
|
133
|
|
|
|
134
|
|
|
######### test value2para ######### |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
value2para_test_para_0 = [ |
138
|
|
|
(np.array([-10]), {"x1": np.array([-10])}), |
139
|
|
|
(np.array([10]), {"x1": np.array([10])}), |
140
|
|
|
(np.array([0]), {"x1": np.array([0])}), |
141
|
|
|
] |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
@pytest.mark.parametrize("test_input,expected", value2para_test_para_0) |
145
|
|
|
def test_value2para_0(test_input, expected): |
146
|
|
|
search_space = { |
147
|
|
|
"x1": np.arange(-10, 11, 1), |
148
|
|
|
} |
149
|
|
|
|
150
|
|
|
conv = Converter(search_space) |
151
|
|
|
para = conv.value2para(test_input) |
152
|
|
|
|
153
|
|
|
assert para == expected |
154
|
|
|
|
155
|
|
|
|
156
|
|
|
value2para_test_para_1 = [ |
157
|
|
|
(np.array([-10, 11]), {"x1": np.array([-10]), "x2": np.array([11])}), |
158
|
|
|
(np.array([10, 11]), {"x1": np.array([10]), "x2": np.array([11])}), |
159
|
|
|
(np.array([0, 0]), {"x1": np.array([0]), "x2": np.array([0])}), |
160
|
|
|
] |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
@pytest.mark.parametrize("test_input,expected", value2para_test_para_1) |
164
|
|
|
def test_value2para_1(test_input, expected): |
165
|
|
|
search_space = { |
166
|
|
|
"x1": np.arange(-10, 11, 1), |
167
|
|
|
"x2": np.arange(0, 11, 1), |
168
|
|
|
} |
169
|
|
|
|
170
|
|
|
conv = Converter(search_space) |
171
|
|
|
order = ["x1", "x2"] |
172
|
|
|
conv = unordered_dict_workaround(conv, order) |
173
|
|
|
para = conv.value2para(test_input) |
174
|
|
|
|
175
|
|
|
assert para == expected |
176
|
|
|
|
177
|
|
|
|
178
|
|
|
######### test para2value ######### |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
para2value_test_para_0 = [ |
182
|
|
|
({"x1": np.array([-10])}, np.array([-10])), |
183
|
|
|
({"x1": np.array([10])}, np.array([10])), |
184
|
|
|
({"x1": np.array([0])}, np.array([0])), |
185
|
|
|
] |
186
|
|
|
|
187
|
|
|
|
188
|
|
|
@pytest.mark.parametrize("test_input,expected", para2value_test_para_0) |
189
|
|
|
def test_para2value_0(test_input, expected): |
190
|
|
|
search_space = { |
191
|
|
|
"x1": np.arange(-10, 11, 1), |
192
|
|
|
} |
193
|
|
|
|
194
|
|
|
conv = Converter(search_space) |
195
|
|
|
value = conv.para2value(test_input) |
196
|
|
|
|
197
|
|
|
assert value == expected |
198
|
|
|
|
199
|
|
|
|
200
|
|
|
para2value_test_para_1 = [ |
201
|
|
|
({"x1": np.array([-10]), "x2": np.array([11])}, np.array([-10, 11])), |
202
|
|
|
({"x1": np.array([10]), "x2": np.array([11])}, np.array([10, 11])), |
203
|
|
|
({"x1": np.array([0]), "x2": np.array([0])}, np.array([0, 0])), |
204
|
|
|
] |
205
|
|
|
|
206
|
|
|
|
207
|
|
|
@pytest.mark.parametrize("test_input,expected", para2value_test_para_1) |
208
|
|
|
def test_para2value_1(test_input, expected): |
209
|
|
|
search_space = { |
210
|
|
|
"x1": np.arange(-10, 11, 1), |
211
|
|
|
"x2": np.arange(0, 11, 1), |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
conv = Converter(search_space) |
215
|
|
|
order = ["x1", "x2"] |
216
|
|
|
conv = unordered_dict_workaround(conv, order) |
217
|
|
|
value = conv.para2value(test_input) |
218
|
|
|
|
219
|
|
|
assert (value == expected).all() |
220
|
|
|
|
221
|
|
|
|
222
|
|
|
######### test values2positions ######### |
223
|
|
|
|
224
|
|
|
|
225
|
|
|
values_0 = [ |
226
|
|
|
np.array([-10]), |
227
|
|
|
np.array([10]), |
228
|
|
|
np.array([0]), |
229
|
|
|
] |
230
|
|
|
|
231
|
|
|
positions_0 = [ |
232
|
|
|
np.array([0]), |
233
|
|
|
np.array([20]), |
234
|
|
|
np.array([10]), |
235
|
|
|
] |
236
|
|
|
|
237
|
|
|
|
238
|
|
|
values_1 = [ |
239
|
|
|
np.array([-10]), |
240
|
|
|
np.array([10]), |
241
|
|
|
np.array([0]), |
242
|
|
|
np.array([-10]), |
243
|
|
|
np.array([10]), |
244
|
|
|
np.array([0]), |
245
|
|
|
np.array([-10]), |
246
|
|
|
np.array([10]), |
247
|
|
|
np.array([0]), |
248
|
|
|
] |
249
|
|
|
|
250
|
|
|
positions_1 = [ |
251
|
|
|
np.array([0]), |
252
|
|
|
np.array([20]), |
253
|
|
|
np.array([10]), |
254
|
|
|
np.array([0]), |
255
|
|
|
np.array([20]), |
256
|
|
|
np.array([10]), |
257
|
|
|
np.array([0]), |
258
|
|
|
np.array([20]), |
259
|
|
|
np.array([10]), |
260
|
|
|
] |
261
|
|
|
|
262
|
|
|
|
263
|
|
|
values2positions_test_para_0 = [ |
264
|
|
|
(values_0, positions_0), |
265
|
|
|
(values_1, positions_1), |
266
|
|
|
] |
267
|
|
|
|
268
|
|
|
|
269
|
|
|
@pytest.mark.parametrize("test_input,expected", values2positions_test_para_0) |
270
|
|
|
def test_values2positions_0(test_input, expected): |
271
|
|
|
search_space = { |
272
|
|
|
"x1": np.arange(-10, 11, 1), |
273
|
|
|
} |
274
|
|
|
|
275
|
|
|
conv = Converter(search_space) |
276
|
|
|
positions = conv.values2positions(test_input) |
277
|
|
|
|
278
|
|
|
assert positions == expected |
279
|
|
|
|
280
|
|
|
|
281
|
|
|
values_0 = [ |
282
|
|
|
np.array([-10, 10]), |
283
|
|
|
np.array([10, 10]), |
284
|
|
|
np.array([0, 0]), |
285
|
|
|
] |
286
|
|
|
|
287
|
|
|
positions_0 = [ |
288
|
|
|
np.array([0, 10]), |
289
|
|
|
np.array([20, 10]), |
290
|
|
|
np.array([10, 0]), |
291
|
|
|
] |
292
|
|
|
|
293
|
|
|
|
294
|
|
|
values_1 = [ |
295
|
|
|
np.array([-10, 10]), |
296
|
|
|
np.array([10, 10]), |
297
|
|
|
np.array([0, 0]), |
298
|
|
|
np.array([-10, 10]), |
299
|
|
|
np.array([10, 10]), |
300
|
|
|
np.array([0, 0]), |
301
|
|
|
np.array([-10, 10]), |
302
|
|
|
np.array([10, 10]), |
303
|
|
|
np.array([0, 0]), |
304
|
|
|
] |
305
|
|
|
|
306
|
|
|
positions_1 = [ |
307
|
|
|
np.array([0, 10]), |
308
|
|
|
np.array([20, 10]), |
309
|
|
|
np.array([10, 0]), |
310
|
|
|
np.array([0, 10]), |
311
|
|
|
np.array([20, 10]), |
312
|
|
|
np.array([10, 0]), |
313
|
|
|
np.array([0, 10]), |
314
|
|
|
np.array([20, 10]), |
315
|
|
|
np.array([10, 0]), |
316
|
|
|
] |
317
|
|
|
|
318
|
|
|
|
319
|
|
|
values2positions_test_para_1 = [ |
320
|
|
|
(values_0, positions_0), |
321
|
|
|
(values_1, positions_1), |
322
|
|
|
] |
323
|
|
|
|
324
|
|
|
|
325
|
|
|
@pytest.mark.parametrize("test_input,expected", values2positions_test_para_1) |
326
|
|
|
def test_values2positions_1(test_input, expected): |
327
|
|
|
search_space = { |
328
|
|
|
"x1": np.arange(-10, 11, 1), |
329
|
|
|
"x2": np.arange(0, 11, 1), |
330
|
|
|
} |
331
|
|
|
|
332
|
|
|
conv = Converter(search_space) |
333
|
|
|
order = ["x1", "x2"] |
334
|
|
|
conv = unordered_dict_workaround(conv, order) |
335
|
|
|
positions = conv.values2positions(test_input) |
336
|
|
|
|
337
|
|
|
assert equal_arraysInList(positions, expected) |
338
|
|
|
|
339
|
|
|
|
340
|
|
|
""" --- test positions2values --- """ |
341
|
|
|
|
342
|
|
|
values_0 = [ |
343
|
|
|
np.array([-10]), |
344
|
|
|
np.array([10]), |
345
|
|
|
np.array([0]), |
346
|
|
|
] |
347
|
|
|
|
348
|
|
|
positions_0 = [ |
349
|
|
|
np.array([0]), |
350
|
|
|
np.array([20]), |
351
|
|
|
np.array([10]), |
352
|
|
|
] |
353
|
|
|
|
354
|
|
|
|
355
|
|
|
values_1 = [ |
356
|
|
|
np.array([-10]), |
357
|
|
|
np.array([10]), |
358
|
|
|
np.array([0]), |
359
|
|
|
np.array([-10]), |
360
|
|
|
np.array([10]), |
361
|
|
|
np.array([0]), |
362
|
|
|
np.array([-10]), |
363
|
|
|
np.array([10]), |
364
|
|
|
np.array([0]), |
365
|
|
|
] |
366
|
|
|
|
367
|
|
|
positions_1 = [ |
368
|
|
|
np.array([0]), |
369
|
|
|
np.array([20]), |
370
|
|
|
np.array([10]), |
371
|
|
|
np.array([0]), |
372
|
|
|
np.array([20]), |
373
|
|
|
np.array([10]), |
374
|
|
|
np.array([0]), |
375
|
|
|
np.array([20]), |
376
|
|
|
np.array([10]), |
377
|
|
|
] |
378
|
|
|
|
379
|
|
|
|
380
|
|
|
positions2values_test_para_0 = [ |
381
|
|
|
(positions_0, values_0), |
382
|
|
|
(positions_1, values_1), |
383
|
|
|
] |
384
|
|
|
|
385
|
|
|
|
386
|
|
|
@pytest.mark.parametrize("test_input,expected", positions2values_test_para_0) |
387
|
|
|
def test_positions2values_0(test_input, expected): |
388
|
|
|
search_space = { |
389
|
|
|
"x1": np.arange(-10, 11, 1), |
390
|
|
|
} |
391
|
|
|
|
392
|
|
|
conv = Converter(search_space) |
393
|
|
|
values = conv.positions2values(test_input) |
394
|
|
|
|
395
|
|
|
assert values == expected |
396
|
|
|
|
397
|
|
|
|
398
|
|
|
values_0 = [ |
399
|
|
|
np.array([-10, 10]), |
400
|
|
|
np.array([10, 10]), |
401
|
|
|
np.array([0, 0]), |
402
|
|
|
] |
403
|
|
|
|
404
|
|
|
positions_0 = [ |
405
|
|
|
np.array([0, 10]), |
406
|
|
|
np.array([20, 10]), |
407
|
|
|
np.array([10, 0]), |
408
|
|
|
] |
409
|
|
|
|
410
|
|
|
|
411
|
|
|
values_1 = [ |
412
|
|
|
np.array([-10, 10]), |
413
|
|
|
np.array([10, 10]), |
414
|
|
|
np.array([0, 0]), |
415
|
|
|
np.array([-10, 10]), |
416
|
|
|
np.array([10, 10]), |
417
|
|
|
np.array([0, 0]), |
418
|
|
|
np.array([-10, 10]), |
419
|
|
|
np.array([10, 10]), |
420
|
|
|
np.array([0, 0]), |
421
|
|
|
] |
422
|
|
|
|
423
|
|
|
positions_1 = [ |
424
|
|
|
np.array([0, 10]), |
425
|
|
|
np.array([20, 10]), |
426
|
|
|
np.array([10, 0]), |
427
|
|
|
np.array([0, 10]), |
428
|
|
|
np.array([20, 10]), |
429
|
|
|
np.array([10, 0]), |
430
|
|
|
np.array([0, 10]), |
431
|
|
|
np.array([20, 10]), |
432
|
|
|
np.array([10, 0]), |
433
|
|
|
] |
434
|
|
|
|
435
|
|
|
|
436
|
|
|
positions2values_test_para_1 = [ |
437
|
|
|
(positions_0, values_0), |
438
|
|
|
(positions_1, values_1), |
439
|
|
|
] |
440
|
|
|
|
441
|
|
|
|
442
|
|
|
@pytest.mark.parametrize("test_input,expected", positions2values_test_para_1) |
443
|
|
|
def test_positions2values_1(test_input, expected): |
444
|
|
|
search_space = { |
445
|
|
|
"x1": np.arange(-10, 11, 1), |
446
|
|
|
"x2": np.arange(0, 11, 1), |
447
|
|
|
} |
448
|
|
|
|
449
|
|
|
conv = Converter(search_space) |
450
|
|
|
order = ["x1", "x2"] |
451
|
|
|
conv = unordered_dict_workaround(conv, order) |
452
|
|
|
values = conv.positions2values(test_input) |
453
|
|
|
|
454
|
|
|
assert equal_arraysInList(values, expected) |
455
|
|
|
|
456
|
|
|
|
457
|
|
|
""" --- test positions_scores2memory_dict --- """ |
458
|
|
|
|
459
|
|
|
|
460
|
|
|
positions_0 = [ |
461
|
|
|
np.array([0, 10]), |
462
|
|
|
np.array([20, 10]), |
463
|
|
|
np.array([10, 0]), |
464
|
|
|
] |
465
|
|
|
|
466
|
|
|
scores_0 = [0.1, 0.2, 0.3] |
467
|
|
|
|
468
|
|
|
|
469
|
|
|
memory_dict_0 = { |
470
|
|
|
(0, 10): 0.1, |
471
|
|
|
(20, 10): 0.2, |
472
|
|
|
(10, 0): 0.3, |
473
|
|
|
} |
474
|
|
|
|
475
|
|
|
positions_scores2memory_dict_test_para_0 = [ |
476
|
|
|
((positions_0, scores_0), memory_dict_0), |
477
|
|
|
# ((positions_1, scores_1), values_1), |
478
|
|
|
] |
479
|
|
|
|
480
|
|
|
|
481
|
|
|
@pytest.mark.parametrize( |
482
|
|
|
"test_input,expected", positions_scores2memory_dict_test_para_0 |
483
|
|
|
) |
484
|
|
|
def test_positions_scores2memory_dict_0(test_input, expected): |
485
|
|
|
search_space = { |
486
|
|
|
"x1": np.arange(-10, 11, 1), |
487
|
|
|
"x2": np.arange(0, 11, 1), |
488
|
|
|
} |
489
|
|
|
|
490
|
|
|
conv = Converter(search_space) |
491
|
|
|
order = ["x1", "x2"] |
492
|
|
|
conv = unordered_dict_workaround(conv, order) |
493
|
|
|
memory_dict = conv.positions_scores2memory_dict(*test_input) |
494
|
|
|
|
495
|
|
|
assert memory_dict == expected |
496
|
|
|
|
497
|
|
|
|
498
|
|
|
""" --- test memory_dict2positions_scores --- """ |
499
|
|
|
|
500
|
|
|
|
501
|
|
|
positions_0 = [ |
502
|
|
|
np.array([0, 10]), |
503
|
|
|
np.array([20, 10]), |
504
|
|
|
np.array([10, 0]), |
505
|
|
|
] |
506
|
|
|
|
507
|
|
|
scores_0 = [0.1, 0.2, 0.3] |
508
|
|
|
|
509
|
|
|
|
510
|
|
|
memory_dict_0 = { |
511
|
|
|
(0, 10): 0.1, |
512
|
|
|
(20, 10): 0.2, |
513
|
|
|
(10, 0): 0.3, |
514
|
|
|
} |
515
|
|
|
|
516
|
|
|
memory_dict2positions_scores_test_para_0 = [ |
517
|
|
|
(memory_dict_0, (positions_0, scores_0)), |
518
|
|
|
] |
519
|
|
|
|
520
|
|
|
|
521
|
|
|
@pytest.mark.parametrize( |
522
|
|
|
"test_input,expected", memory_dict2positions_scores_test_para_0 |
523
|
|
|
) |
524
|
|
|
def test_memory_dict2positions_scores_0(test_input, expected): |
525
|
|
|
search_space = { |
526
|
|
|
"x1": np.arange(-10, 11, 1), |
527
|
|
|
"x2": np.arange(0, 11, 1), |
528
|
|
|
} |
529
|
|
|
|
530
|
|
|
conv = Converter(search_space) |
531
|
|
|
order = ["x1", "x2"] |
532
|
|
|
conv = unordered_dict_workaround(conv, order) |
533
|
|
|
positions, scores = conv.memory_dict2positions_scores(test_input) |
534
|
|
|
|
535
|
|
|
idx_order = get_idx_order(scores, expected[1]) |
536
|
|
|
scores_reordered = reorder(scores, idx_order) |
537
|
|
|
positions_reordered = reorder(positions, idx_order) |
538
|
|
|
|
539
|
|
|
assert equal_arraysInList(positions_reordered, expected[0]) |
540
|
|
|
assert scores_reordered == expected[1] |
541
|
|
|
|
542
|
|
|
|
543
|
|
|
""" --- test dataframe2memory_dict --- """ |
544
|
|
|
|
545
|
|
|
|
546
|
|
|
dataframe = pd.DataFrame( |
547
|
|
|
[[-10, 10, 0.1], [10, 10, 0.2], [0, 0, 0.3]], columns=["x1", "x2", "score"] |
548
|
|
|
) |
549
|
|
|
|
550
|
|
|
|
551
|
|
|
memory_dict_0 = { |
552
|
|
|
(0, 10): 0.1, |
553
|
|
|
(20, 10): 0.2, |
554
|
|
|
(10, 0): 0.3, |
555
|
|
|
} |
556
|
|
|
|
557
|
|
|
dataframe2memory_dict_test_para_0 = [ |
558
|
|
|
(dataframe, memory_dict_0), |
559
|
|
|
] |
560
|
|
|
|
561
|
|
|
|
562
|
|
|
@pytest.mark.parametrize( |
563
|
|
|
"test_input,expected", dataframe2memory_dict_test_para_0 |
564
|
|
|
) |
565
|
|
|
def test_dataframe2memory_dict_0(test_input, expected): |
566
|
|
|
search_space = { |
567
|
|
|
"x1": np.arange(-10, 11, 1), |
568
|
|
|
"x2": np.arange(0, 11, 1), |
569
|
|
|
} |
570
|
|
|
|
571
|
|
|
conv = Converter(search_space) |
572
|
|
|
order = ["x1", "x2"] |
573
|
|
|
conv = unordered_dict_workaround(conv, order) |
574
|
|
|
memory_dict = conv.dataframe2memory_dict(test_input) |
575
|
|
|
|
576
|
|
|
assert memory_dict == expected |
577
|
|
|
|
578
|
|
|
|
579
|
|
|
""" --- test memory_dict2dataframe --- """ |
580
|
|
|
|
581
|
|
|
|
582
|
|
|
dataframe = pd.DataFrame( |
583
|
|
|
[[-10, 10, 0.1], [10, 10, 0.2], [0, 0, 0.3]], columns=["x1", "x2", "score"] |
584
|
|
|
) |
585
|
|
|
|
586
|
|
|
|
587
|
|
|
memory_dict_0 = { |
588
|
|
|
(0, 10): 0.1, |
589
|
|
|
(20, 10): 0.2, |
590
|
|
|
(10, 0): 0.3, |
591
|
|
|
} |
592
|
|
|
|
593
|
|
|
memory_dict2dataframe_test_para_0 = [ |
594
|
|
|
(memory_dict_0, dataframe), |
595
|
|
|
] |
596
|
|
|
|
597
|
|
|
|
598
|
|
|
@pytest.mark.parametrize( |
599
|
|
|
"test_input,expected", memory_dict2dataframe_test_para_0 |
600
|
|
|
) |
601
|
|
|
def test_memory_dict2dataframe_0(test_input, expected): |
602
|
|
|
search_space = { |
603
|
|
|
"x1": np.arange(-10, 11, 1), |
604
|
|
|
"x2": np.arange(0, 11, 1), |
605
|
|
|
} |
606
|
|
|
|
607
|
|
|
conv = Converter(search_space) |
608
|
|
|
order = ["x1", "x2"] |
609
|
|
|
conv = unordered_dict_workaround(conv, order) |
610
|
|
|
dataframe = conv.memory_dict2dataframe(test_input) |
611
|
|
|
|
612
|
|
|
dataframe.sort_values("score", inplace=True) |
613
|
|
|
expected.sort_values("score", inplace=True) |
614
|
|
|
|
615
|
|
|
dataframe.reset_index(drop=True, inplace=True) |
616
|
|
|
expected.reset_index(drop=True, inplace=True) |
617
|
|
|
|
618
|
|
|
dataframe = dataframe[expected.columns] |
619
|
|
|
|
620
|
|
|
assert dataframe.equals(expected) |
621
|
|
|
|